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Abstract

Hierarchical Reinforcement Learning (HRL) is a promising approach for managing task
complexity across multiple levels of abstraction and accelerating long-horizon agent explo-
ration. However, the effectiveness of hierarchical policies heavily depends on prior knowl-
edge and manual assumptions about skill definitions and task decomposition. In this paper,
we propose a novel Structural Information principles-based framework, namely SIDM,
for hierarchical Decision Making in both single-agent and multi-agent scenarios. Central
to our work is the utilization of structural information embedded in the decision-making
process to adaptively and dynamically discover and learn hierarchical policies through
environmental abstractions. Specifically, we present an abstraction mechanism that pro-
cesses historical state-action trajectories to construct abstract representations of states and
actions. We define and optimize directed structural entropy—a metric quantifying the un-
certainty in transition dynamics between abstract states—to discover skills that capture
key transition patterns in RL environments. Building on these findings, we develop a skill-
based learning method for single-agent scenarios and a role-based collaboration method for
multi-agent scenarios, both of which can flexibly integrate various underlying algorithms
for enhanced performance. Extensive evaluations on challenging benchmarks demonstrate
that our framework significantly and consistently outperforms state-of-the-art baselines,
improving the effectiveness, efficiency, and stability of policy learning by up to 32.70%,
64.86%, and 88.26%, respectively, as measured by average rewards, convergence timesteps,
and standard deviations.
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1 Introduction

Reinforcement learning (RL) (Sutton et al., 1998) enables agents to develop optimal decision-
making strategies by interacting with their environment to solve sequential tasks with goal-
oriented objectives. The integration of deep neural networks (LeCun et al., 2015; Schmidhu-
ber, 2015) with RL has demonstrated remarkable success in diverse applications, including
game intelligence (Vinyals et al., 2019; Zhou et al., 2023; Zhong et al., 2024), video accelera-
tion (Ramos et al., 2022), and model fitting (Truong et al., 2022). However, RL algorithms
face the critical challenge of requiring extensive interactions with complex environments to
learn effective policies (Mattes et al., 2024).

Hierarchical reinforcement learning (HRL) offers a promising approach to improving
sample efficiency by structuring agent exploration and decision-making across multiple levels
of abstraction (Merel et al., 2019; Marino et al., 2018). HRL decomposes long-horizon tasks
into subtasks, enabling hierarchical policies to operate at different temporal and abstraction
levels, thereby accelerating policy learning (Hafner et al., 2022). However, many existing
HRL approaches depend on prior knowledge, incorporating handcrafted assumptions about
skill definitions (Lee et al., 2019, 2020b) or manually designed task decomposition heuristics
(Tessler et al., 2017). The HSD-3 framework (Gehring et al., 2021) autonomously learns
a skill hierarchy during a pre-training stage without reward supervision, but it still re-
lies on manually selected features and predefined target objectives. Reskill (Rana et al.,
2023) leverages state-conditioned generative models to construct a skill space but depends
on expert-defined manipulation tasks for collecting demonstration data. The CEO frame-
work (Machado et al., 2023), built on successor representation (Dayan, 1993), effectively
discovers meaningful skills but introduces computational complexity and is sensitive to the
skill scale. In multi-agent reinforcement learning (MARL), role-based task decomposition
(Wang et al., 2020, 2021b) has proven effective in facilitating hierarchical collaborative
strategies. However, its success heavily depends on domain-specific task knowledge and is
highly sensitive to role discovery parameters. Therefore, developing an effective and stable
hierarchical decision-making framework that operates without prior knowledge remains a
critical challenge in advancing scalable and generalizable reinforcement learning.

To address this, we draw inspiration from structural information principles (Li and Pan,
2016), which provide a foundation for adaptive hierarchy discovery. Structural entropy
measures the uncertainty in an undirected graph’s dynamics by quantifying the number of
bits required to encode a vertex transition during a single-step random walk. Minimizing
this structural uncertainty yields a hierarchical partitioning of graph vertices1, referred to
as the encoding tree. Within this tree, each node corresponds to a subset of vertices, termed
a ’community’, where vertices exhibit stronger intraconnections than interconnections. In
this work, we leverage the structural information embedded in the decision-making process
to discover and learn hierarchical policies dynamically through environmental abstractions.

To this end, we propose a novel Structural Information principles-based hierarchical
Decision Making framework, called SIDM, to address the reliance on prior knowledge

1. A vertex is defined in the graph and a node in the tree.
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(a) Four-room Navigation (b) State Abstraction (c) Skill Discovery (d) Hierarchical Learning

Figure 1: Illustrative single-agent navigation task within the gridworld bench-
mark, where the agent navigates from the start location (green) to the goal
(red) while interacting with its environment.

and manual design in HRL. First, we introduce an adaptive abstraction mechanism that
extracts meaningful structure from high-dimensional, noisy state-action information, pro-
ducing compact abstract representations of states and actions. This mechanism leverages
encoding trees to cluster states or actions with similar features into communities dynami-
cally and applies an aggregation function to compute their abstract representations. Second,
we formally define and optimize directed structural entropy to extend structural informa-
tion principles beyond undirected graphs, enabling the modeling of asymmetric abstract
state transitions. Using directed entropy, we quantify transition probabilities between ab-
stract states and identify high-frequency transitions between abstract communities as skills,
capturing key transition patterns in RL environments. Third, we build on the discovered
skills and abstract actions to develop a skill-based method for single-agent learning and
a role-based strategy for multi-agent collaboration. These methods operate independently
of manual assistance and can flexibly integrate various underlying algorithms to enhance
their performance. Finally, we conduct extensive experiments and comprehensive analysis
on well-established benchmarks, including visual gridworld navigation, continuous robotic
control, and StarCraft II micro-management. Comparative results demonstrate that, com-
pared to state-of-the-art baselines, our framework improves average reward (effectiveness)
and sampling efficiency (efficiency) by up to 32.70% and 64.86%, respectively, while reducing
standard deviation (stability) by up to 88.26%.

Figure 1 shows a single-agent navigation task in the four-room domain, where the agent
moves between rooms to reach a designated target. As shown in Figure 1(a), the agent
receives high-dimensional, noisy visual inputs (e.g., from a camera or sensor) and navigates
from the green starting position to the red target location. As illustrated in Figure 1(b),
the SIDM framework extracts structural relationships from raw observations to generate
abstract state representations in a lower-dimensional space, approximating the original 2D
coordinates and thereby simplifying decision-making. By computing and optimizing struc-
tural entropy in directed abstract transitions, the SIDM framework adaptively identifies
key abstract states—such as turning points between rooms in the gridworld (Figure 1(c)).
By modeling navigation behaviors between these key states as skills, SIDM enables more
efficient decision-making within each corresponding subspace, as shown in Figure 1(d).

This paper is organized as follows: Section 2 outlines the preliminaries and notations,
Section 3 discusses the related work, Section 4 presents the detailed designs of SIDM frame-
work, Sections 5 and 6 describe the experimental setups and evaluations, followed by the
conclusion in Section 7.
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2 Preliminaries and Notations

This section establishes the foundational concepts of reinforcement learning and structural
information principles. We distinguish between “primitive states and actions,” which repre-
sent the original variables provided by the environment, and “abstract states and actions,”
which represent higher-level abstractions derived from them. Spaces (denoted by calli-
graphic fonts, e.g., S,A) represent the complete sets of possible states or actions. Variables
(denoted by capital letters, e.g., S,A) represent random variables over states or actions,
often sampled from the replay buffer in practical implementations. Values (denoted by
lowercase letters, e.g., s, a) represent specific instances of states or actions within their re-
spective spaces. A summary of the primary notations and their detailed descriptions is
provided in Appendix A.1.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a learning paradigm in which one or more agents learn
to make sequential decisions by interacting with an environment whose dynamics may be
partially or fully unknown, with the objective of maximizing expected cumulative rewards.

2.1.1 Markov Decision Process

In RL, the single-agent decision-making problem is formulated as a Markov decision
process (MDP) (Bellman, 1957), which is formally defined as a tuple:

Ms = ⟨S,A,R,P, γ⟩, (1)

where S is the state space, A is the action space, R : S × A → R is the reward function
mapping state-action pairs to expected rewards, P : S×A → ∆(S) is the transition function
defining the probability distribution over next states, and γ ∈ [0, 1) is the discount factor
that determines the weighting of future rewards.

The notation ∆(S) refers to the space of probability distributions over the state space
S. Here, the subscript s in Ms explicitly denotes a single-agent MDP, distinguishing it
from the multi-agent Markov game Mm introduced later.

At each timestep t, the agent observes the current state st ∈ S and selects an action
at ∈ A according to its policy, i.e., at ∼ π(st), where π : S → ∆(A) defines a probability
distribution over actions conditioned on the current state. The action at leads to a new
state st+1, sampled from the transition distribution, i.e., st+1 ∼ P(st, at), and the agent
receives a reward rt ∼ R(st, at) ∈ R.

The agent aims to learn an optimal policy π∗ : S → ∆(A) that maximizes the expected
cumulative discounted reward:

π∗ = arg max
π

EP,π

[ ∞∑
t=0

γtR(st, at)

]
. (2)
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2.1.2 Markov Game

A fully cooperative multi-agent task, where all agents aim to maximize a shared reward, is
modeled as a Markov game (Littman, 1994). It is formally defined as a tuple:

Mm = ⟨N ,S,A,R,P, γ⟩, (3)

where N ≡ {n1, n2, . . . , n|N |} denotes the finite set of cooperative agents, with |N | repre-
senting the total number of agents. S is the global state space, and A ≡ A1 × · · · ×A|N | is
the joint action space composed of individual agent action spaces. R : S × A → R is the
shared reward function, P : S × A → ∆(S) is the global transition function, and γ ∈ [0, 1)
is the discount factor.

At each timestep t, each agent ni ∈ N selects an action ait ∈ Ai based on the global

state st ∈ S. The set of individual actions forms a joint action at ≡ [ait]
|N |
i=1. This joint

action induces a transition to the next global state st+1 ∼ P(· | st,at) and yields a shared
reward rt = R(st,at).

Each agent ni maintains a local trajectory τi, which consists of its sequence of observa-
tions, actions, and rewards over time. It optimizes a local policy πi(a

i
t | τi) to maximize the

overall team performance, defined by the expected cumulative discounted reward under the
joint policy π ≡ {π1, π2, . . . , π|N |}:

π∗ = arg max
π

EP,π

[ ∞∑
t=0

γtR(st,at)

]
. (4)

2.1.3 State or Action Abstraction

State or action abstraction (Abel, 2022) aims to simplify decision-making by designing a
parameterized abstraction function fϕ with the trainable parameter ϕ, which maps primitive
states and actions to their abstract counterparts.

Specifically, fϕ maps each primitive state s ∈ S to an abstract state zs ∈ Zs, i.e.,
fϕ : S → Zs, or each primitive action a ∈ A to an abstract action za ∈ Za, i.e., fϕ : A → Za.
This abstraction reduces the complexity of the original decision process by compressing
state and action representations, enabling more efficient policy learning through reduced
dimensionality and improved generalization. The resulting abstract MDP is formally defined
as a tuple:

Mϕ = ⟨Zs,Za,Rϕ,Pϕ, γ⟩, (5)

where Zs and Za are the abstract state and action spaces, Pϕ : Zs × Za → ∆(Zs) is
the abstract transition function, Rϕ : Zs × Za → R is the abstract reward function, and
γ ∈ [0, 1) is the discount factor.

The abstract transition and reward functions, Pϕ andRϕ, are constructed by aggregating
the transition dynamics and reward distributions of the underlying MDP over the pre-image
sets induced by fϕ. Specifically, they are defined as follows:

Pϕ(zsk|zsi , zaj ) =
∑
st∈zsi

∑
at∈zaj

∑
st+1∈zsk

P(st+1|st, at), Rϕ(zsi , z
a
j ) =

∑
st∈zsi

∑
at∈zaj

R(st, at), (6)

where zsi ∈ Zs and zaj ∈ Za denote an abstract state and abstract action, respectively.
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2.1.4 Skill-based Learning

In skill-based learning, we use the term ‘skill’ to refer broadly to the general concept of
reusable behaviors or abilities, while an ‘option’ refers to a specific, parameterized instance
of a skill, defined by an initiation set, an option policy, and a termination condition, as
established in prior work (Sutton et al., 1999; Machado et al., 2023).

Following the option framework (Precup, 2000), an option κ ∈ K, representing a learned
skill, is formally defined as a tuple:

κ = ⟨Iκ, πκ, Tκ⟩, (7)

where Iκ ⊆ S is the initiation set in which the option κ can be executed, πκ : S → ∆(A)
is is the option policy mapping states to a probability distribution over primitive actions,
and Tκ : S → [0, 1] is the termination function specifying the probability of terminating the
option at a given state.

Incorporating the skill space K within an MDP gives rise to a hierarchical two-level
policy structure. The high-level policy πh

k selects an option κ ∈ K, while the low-level
policy πl

k governs primitive action execution under the chosen option until the termination
function Tκ signals the end of the option.

2.1.5 Role-based Learning

In role-based learning (Wilson et al., 2010; Wang et al., 2021b), the goal is to improve
agent coordination and enhance scalability in complex multi-agent cooperative tasks by
decomposing Mm into subtasks through the assignment of specialized roles. This decom-
position is guided by a predefined role space Ψ, where each role imposes structural con-
straints on agent behavior by limiting its available actions. By reducing ambiguity in role
assignments, this approach facilitates more efficient learning and execution of cooperative
behaviors.

Each role ρj ∈ Ψ encapsulates a subtask and an associated policy, formally defined as:

ρj =
〈
tj , πρj

〉
, (8)

where the subtask tj = ⟨Nj ,S,Aj ,R,P, γ⟩ is derived from the global task but restricted to
a subset of agents Ni ⊆ N . The role policy πρj : S → ∆(Aj) governs action selection by
assigning a probability distribution over the actions available within subtask tj .

Within each subtask tj , agents in Nj operate in a constrained action subspace Aj ⊆ A,
which minimizes action overlap across roles and promotes more structured and efficient
role-based coordination.

2.2 Structural Information Principles

Efficient and robust decision-making requires abstracting raw state and action information
by eliminating irrelevant details while preserving essential features. To model structural
relationships among states or actions, we construct a weighted, undirected graph G =
(V,E,W ), built separately for each entity type. In this graph, all vertices V represent
either states S or actions A, and edges E connect vertices that exhibit functional similarity,
typically computed via feature-based similarity metrics. The edge weights W : E → R≥0
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quantify the degree of similarity between connected vertices, and the degree of a vertex
v ∈ V , denoted dv, is defined as the sum of the weights of all its incident edges.

Building on this graphical representation, we introduce encoding trees (Li and Pan,
2016) to represent a hierarchical partitioning of the vertices based on their feature sim-
ilarities. Each level of the tree reflects a progressive grouping of elements, where lower
levels correspond to fine-grained partitions that capture detailed distinctions, and higher
levels represent broader aggregations that highlight overarching structural patterns. This
hierarchical structure helps capture both local and global structural relationships among
states or actions, enabling the model to recognize patterns of similarity and connectivity
that influence decision-making processes.

We then leverage structural entropy—a measure of uncertainty associated with hierarchi-
cal partitioning—to quantitatively assess the quality of the induced hierarchy. Minimizing
structural entropy guides partitioning to capture the intrinsic organization of the state or
action space more faithfully.

2.2.1 Encoding Tree

Given the weighted, undirected graph G, we define an encoding tree T that hierarchically
partitions the set of states or actions according to their feature-driven similarities. This
tree is rooted and satisfies the following properties:

• The root node λ ∈ T corresponds to the entire vertex set V , meaning that Vλ = V ,
and it serves as the starting point for the hierarchical partitioning.

• Each leaf node ν ∈ T corresponds to a singleton set containing a single vertex v ∈ V ,
i.e., Vν = v, representing the finest level of partitioning in the tree.

• Each internal node α ∈ T (i.e., neither a root nor a leaf) corresponds to a vertex
subset Vα ⊆ V , grouping states or actions that are further partitioned in the tree.

• Each non-root node α ∈ T has a unique parent node, denoted as α−, from which α is
directly descended in the tree structure.

• Each non-leaf node α ∈ T has exactly Lα ≥ 2 children, indexed from left to right as
α1, α2, . . . , αLα , where the index i increases sequentially.

• For each non-leaf node α ∈ T , the vertex subsets of its children are pairwise disjoint,
satisfying Vα =

⋃Lα−1
i=0 Vαi and Vαi ∩ Vαj = ∅ for all i ̸= j.

2.2.2 Structural Entropy

The one-dimensional structural entropy measures the dynamical uncertainty in single-
step random walks within the state or action graph G, without applying any partitioning
strategy, where all states or actions belong to a single community. Mathematically, it is
equivalent to the Shannon entropy of the stationary distribution induced by vertex degrees,
reflecting the local similarity structure of each state or action with its neighbors. It is
defined as follows:

H1(G) = −
∑
v∈V

dv
vol(G)

· log2
dv

vol(G)
, (9)

where vol(G) =
∑

v∈V dv is the total volume of the graph, representing the sum of all vertex
degrees. An encoding tree T introduces a hierarchical partitioning strategy that refines this
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entropy by clustering strongly connected vertices, thereby revealing the inherent hierarchical
community structure of the graph.

The K-dimensional structural entropy quantifies the residual structural entropy in
the graph G after applying a hierarchical partitioning strategy represented by an encoding
tree T with height at most K. For each non-root node α in T , the assigned structural
entropy is defined as follows:

HT (G;α) = − gα
vol(G)

log2
Vα
Vα−

, (10)

where gα denotes the total edge weight of all edges crossing the boundary of Vα, and Vα
denotes the volume of the subgraph induced by Vα, i.e., the sum of degrees of its constituent
vertices. A higher value of HT (G;α) indicates greater uncertainty in single-step transitions
from the parent community Vα− to the sub-community Vα.

The overall K-dimensional structural entropy is defined as the minimum total entropy
over all encoding trees of height at most K, formally expressed as follows:

HK(G) = min
T

{
HT (G)

}
, HT (G) =

∑
α∈T,α̸=λ

HT (G;α). (11)

A structural entropy optimization algorithm guides the construction of such an encoding
tree, and the tree that minimizes this entropy is referred to as the optimal encoding tree.
This tree effectively captures the hierarchical community structure among states or actions
based on feature similarity. In each sampled batch, states or actions with similar features
are adaptively grouped into communities, forming the foundation for subsequent state and
action abstraction mechanisms.

3 Related Work

This section reviews related work on structural information principles, state abstraction,
and hierarchical decision-making, highlighting the motivation behind our proposed SIDM
framework and its primary advantages over existing approaches.

3.1 Structural Information Principle

Structural information (Li and Pan, 2016) was introduced in 2016 to quantify the dynamic
uncertainty in complex graph structures. Specifically, structural entropy measures the min-
imum number of bits required to identify an accessible vertex in a single-step random walk.
The principles of structural entropy minimization (Li et al., 2016, 2018) were later intro-
duced to automatically identify the optimal partitioning strategy, known as the encoding
tree, which reveals the hierarchical community structure of vertices.

Since then, structural information principles have been applied across various fields,
including graph learning (Liu et al., 2019; Wu et al., 2022), network analysis (Zeng et al.,
2024; Cao et al., 2024), and reinforcement learning (Zeng et al., 2023a,b). However, existing
research on structural information has primarily focused on undirected graphs, which are
unable to capture irreversible directional relationships between graph vertices, leading to
inevitable information loss.
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In this work, we extend structural information principles by proposing a formal definition
and an optimization algorithm for directed graphs. Furthermore, we leverage structural
information from historical state-action trajectories to develop a novel hierarchical decision-
making framework based on state and action abstractions applicable to both single-agent
and multi-agent scenarios.

3.2 State Abstraction

Value function approximation (Mahadevan and Maggioni, 2005, 2007) utilizes spectral anal-
ysis of the state space to derive low-dimensional, compact representations of the Markov
Decision Process, thereby improving policy learning. The successor representation charac-
terizes states by their discounted occupancy and visitation density, facilitating knowledge
transfer across tasks (Barreto et al., 2017) and enabling learning conditioned on specific
goals (Hoang et al., 2021). However, these methods often suffer from instability and poor
generalization in noisy, high-dimensional environments, limiting their effectiveness.

Previous studies have investigated aggregation functions that cluster similar states to
reduce task complexity (Hutter, 2016; Abel et al., 2018). Abstract State Transition Graphs
(STGs) (de Mendonça et al., 2018) create compact state representations by identifying
structurally similar states through encoded features. The DSAA method (Attali et al., 2022)
achieves end-to-end state-action abstraction based on successor features and max-entropy
regularization. Nevertheless, these methods rely on prior knowledge about underlying tasks,
such as the distance threshold parameter in the DBSCAN algorithm and the assumed
N-simplex distribution over abstract states, which limits their stability and effectiveness
across diverse scenarios. Recent studies (Zang et al., 2022; Zhu et al., 2022) have explored
different learning objectives to refine state representations from environmental observations.
While these methods yield strong representational power, they often prioritize invariance,
potentially discarding essential environmental details—such as context-specific features or
dynamic variations—leading to inaccurate characterizations of the original decision process
(Abel et al., 2019).

In this work, we leverage similarity-based structural relationships between states to
achieve adaptive state abstraction, balancing the removal of irrelevant information with the
preservation of critical decision-making features for robust policy learning.

3.3 Hierarchical Decision Making

3.3.1 Skill-based Learning

Skill-based learning utilizes previously acquired behaviors or skills to facilitate efficient
exploration in complex decision-making tasks (Merel et al., 2018, 2020). The DHRL method
(Lee et al., 2022) separates the time horizons of low-level and high-level policies using
a graph structure, improving training efficiency in standard environments. Meanwhile,
Gaussian prior (Pertsch et al., 2021) and conditional generative models (Singh et al., 2020)
are introduced to approximate the distribution of relevant skills for a given state and to
guide exploration of the skill space, respectively.

Despite these benefits, skill discovery remains a fundamental challenge due to the dif-
ficulty of identifying reusable and transferable behaviors across diverse tasks. To address
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this challenge, researchers have explored structured approaches for constructing meaningful
skills. One approach (Jinnai et al., 2019) constructs skills by minimizing cover time—a
metric derived from the state transition graph—to accelerate learning in environments with
sparse rewards. Reward-respecting subtasks (Sutton et al., 2023) incorporate environmen-
tal rewards associated with terminating states, ensuring alignment with the overall reward
structure. The ROD algorithm (Machado et al., 2023) employs spectral analysis and clus-
tering on successor representations to identify skills that facilitate temporally extended
exploration. However, these methods typically rely on a fixed skill set, limiting adaptability
in dynamic environments. Furthermore, their dependence on the original state space con-
strains scalability, particularly in complex environments with high-dimensional and noisy
state spaces.

In this work, we define and optimize the structural entropy of directed transitions be-
tween abstract states to construct a skill hierarchy with an adaptive scale. The DSAA
algorithm (Attali et al., 2022) and the Louvain algorithm (Evans and Şimşek, 2023) were re-
cently introduced to similarly compute skills between abstract states and to construct multi-
level skill hierarchies, respectively. However, their limited consideration of transition-based
relationships between abstract states, along with their reliance on a fixed-resolution par-
titioning parameter, constrains their effectiveness and flexibility in decision-making across
diverse evaluation scenarios, as discussed in Section 6.2.

3.3.2 Role-based Learning

In natural systems (Gordon, 1996; Jeanson et al., 2005; Butler, 2012), individuals assume
specialized roles that enhance labor division and improve operational or cognitive efficiency.
Inspired by this, multi-agent systems decompose tasks and assign specialized agents to sub-
tasks, thereby reducing design complexity and improving performance (Wooldridge et al.,
2000; Bonjean et al., 2014).

However, the practical implementation of these approaches is often constrained, as pre-
defined task decompositions and roles are not always available in real-world environments,
making their application challenging (Lhaksmana et al., 2018; Sun et al., 2020). To address
this, Bayesian inference (Wilson et al., 2010) has been incorporated into MARL algorithms
to infer roles dynamically, while the ROMA methodology (Wang et al., 2020) fosters role
emergence by designing a specialization objective that encourages agents to differentiate
their tasks. Despite these advances, exhaustive exploration of the entire state-action space
remains computationally prohibitive. The RODE method alleviates this issue by decom-
posing joint action spaces (Wang et al., 2021b), facilitating more efficient exploration and
coordination among agents through a focus on relevant action subspaces. Nevertheless,
its effectiveness is strongly influenced by domain-specific knowledge, as it remains highly
sensitive to parameters such as the number of clusters and the choice of distance metrics in
clustering algorithms.

In this work, we leverage structural similarities between actions to achieve hierarchical
action abstraction, enabling an adaptive, role-based learning method that requires no prior
knowledge. By dynamically structuring the action space, our approach improves scalability
and generalization across diverse multi-agent collaboration scenarios.

10



Hierarchical Decision Making Based on Structural Information Principles

Transition
Function

Reward
Function

Environment

Multi-agent
Collaboration

Single-agent
Learning

RL Algorithms
action

state
trajectory

skill/role
abstract 

state

Structural Information Principles

Undirected Entropy Directed Entropy

Abstraction Mechanism Skill Discovery

Role-based Learning Skill-based Learning

SIDM Framework

role  space skill  spaceabstract states

definition  optimization definition  optimization

Figure 2: The overall decision-making process, including the environment, the
proposed SIDM framework, and various downstream RL algorithms.

4 The Proposed SIDM Framework

This section provides an overview of our proposed SIDM framework, which takes as input
the original states and historical trajectories from the environment and outputs the discov-
ered skills, roles, and corresponding abstract states, which can be utilized by downstream
RL algorithms, as shown in Figure 2. Specifically, our framework introduces an adaptive
abstraction mechanism to derive abstract representations of states and actions, defines and
optimizes directed structural entropy in abstract transitions to facilitate hierarchical skill
discovery, and develops skill-based and role-based learning methods for single-agent and
multi-agent decision-making, respectively.

4.1 Abstraction Mechanism

To improve learning efficiency and reduce the complexity of high-dimensional and noisy en-
vironmental information, we present an adaptive abstraction mechanism based on structural
information principles. This mechanism partitions similar states and actions into distinct
communities, producing compact and meaningful abstract state and action representations.

At each timestep t, we sample a batch of size n from the replay buffer B, which includes
the current state variable St, action variable At, subsequent state variable St+1, and reward
variable Rt. Each of these denotes a batch of random variables drawn from the replay
buffer. We first employ an encoder-decoder architecture (Cho et al., 2014) to transform the
original high-dimensional variables St, St+1, and At into their low-dimensional represen-
tations, denoted as S′

t, S
′
t+1, and A′

t, respectively. The transformation process is formally
defined as follows:

S′
t = fs

ϕs
(St), S′

t+1 = fs
ϕs

(St+1), A′
t = fa

ϕa
(At), (12)

where f s
ϕs

and fa
ϕa

denote the state and action encoders with parameters ϕs and ϕa, re-
spectively. To highlight similarities between action functionalities and state transitions, we
introduce two decoders, each with a distinct objective: the state decoder ds predicts actions
based on state transitions, while the action decoder da reconstructs the next state based
on actions and current states. Specifically, the state decoder dsθs(at|s

′
t, s

′
t+1; θs) employs a

cross-entropy loss for inverse dynamics modeling (Allen et al., 2021) to predict the current
action at ∈ At given the adjacent state representations s′t ∈ S′

t and s′t+1 ∈ S′
t+1. The

action decoder daθa(st+1|s′t, a′t; θa) reconstructs the next state st+1 ∈ St+1 using the action
representation a′t ∈ A′

t and the current state representation s′t ∈ S′
t. The decoder loss Lde

11
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𝑆𝑆

𝑍𝑍𝑠𝑠

𝐴𝐴

𝑍𝑍𝑎𝑎𝜂𝜂𝑠𝑠𝑡𝑡 𝜂𝜂𝑐𝑐𝑝𝑝 𝐻𝐻(𝐺𝐺;𝛼𝛼)

a) initial encoding tree b) binary encoding tree c) optimal encoding tree d) feature aggregation

𝑉𝑉𝜆𝜆 = 𝑆𝑆

𝑉𝑉𝜆𝜆 = 𝐴𝐴

Figure 3: The abstraction mechanism for states and actions.

is computed as follows:

Lde = − 1

n
·

n∑
i=1

[
||dsθs(s

′
t, s

′
t+1)− at||22 + ||daθa(s′t, a

′
t)− st+1||22

]
. (13)

For simplicity, we denote the combined set of abstract state representations, S′
t and S′

t+1

as S, and refer to A′
t as A. In the following discussion, we use state abstraction as an

illustrative example, while applying the same methodology to action abstraction.
Although the bisimulation metric (Castro, 2020) effectively captures behavioral equiv-

alence between states, its computational complexity is prohibitively high. Therefore, we
second adopt a more computationally efficient similarity metric based on Pearson Corre-
lation Analysis. For each pair of states si, sj ∈ S with i ̸= j, we compute their similarity
score C(si, sj) using Pearson correlation over their feature dimensions:

C(si, sj) =
E
(
(si − µsi)(sj − µsj )

)
σsiσsj

, (14)

where µsi and µsj denote the means, and σsi and σsj denote the variances of state rep-
resentations si and sj , respectively. A higher absolute value of C(si, sj) indicates greater
similarity between states si and sj , guiding the state abstraction process by grouping similar
states together.

Third, we construct a complete, weighted, and undirected state graph Gs, where each
state s ∈ S is a vertex and each edge (si, sj) is weighted by the metric C(si, sj). To eliminate
the interference of insignificant connections, particularly those with absolute values near
zero, we apply edge filtration to the complete state graph Gs. Following the prior study
(Li et al., 2016), we simplify Gs into a k-nearest neighbor (kNN) graph by minimizing its
one-dimensional structural entropy. The filtration procedure, summarized in Algorithm 1,
involves treating each state s ∈ S as a center vertex and retaining only its k edges with
the highest absolute weights to construct the kNN graph Gk (line 4 in Algorithm 1). We
then compute the one-dimensional structural entropy H1(Gk) for the resulting graph Gk

(line 5 in Algorithm 1). To determine the optimal parameter k∗, we evaluate H1(Gk) across
a range of plausible k values and select the one that minimizes entropy (lines 3 and 8 in
Algorithm 1). The optimized graph Gk∗ serves as the final sparse state graph G∗

s (lines 9
and 10 in Algorithm 1).

Fourth, as illustrated in Figure 3, we determine the optimal partitioning structure of
the sparse state graph G∗

s and design an aggregation function derive abstract states within
each community. We initialize a one-layer partitioning structure for G∗

s, represented as the

12
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Algorithm 1: The Edge Filtration Algorithm

1: Input: a weighted, undirected, and complete graph G = (V,E,W )
2: Output: a sparsified graph G∗

3: for k = 1 to n− 1 do
4: if the kNN graph Gk exists then
5: H1(Gk)← calculate the one-dimensional structural entropy of Gk

6: end if
7: end for
8: k∗ ← arg mink{H1(Gk)}
9: G∗ ← Gk∗

10: return G∗

initial encoding tree Ts, where each community initially consists of a single state. To further
optimize this partitioning structure, we introduce two stable-enhancing operators from the
HSCE algorithm (Pan et al., 2021): stretch (ηst) and compress (ηcp), which iteratively
reduce the structural entropy of G∗

s under Ts, increasing the tree height from 1 to 2. The
optimization process is summarized in Algorithm 2. During a “stretch-compress” cycle, we
operate on the set U s

i of tree nodes at layer i in Ts and quantify the average variation in
structural entropy as Spari(Ts). In each iteration, we traverse all sets of tree nodes at the
same level and select the set that results in the greatest reduction in structural entropy
(line 4 in Algorithm 2). These selected nodes then undergo a “stretch-compress” cycle
(lines 8 - 13 in Algorithm 2). The iteration terminates when either the tree height reaches
hTs = 2 (line 3 in Algorithm 2) or no node set exhibits a positive entropy reduction, i.e.,
Spari∗(Ts) > 0 (lines 5 and 6 in Algorithm 2). The process outputs the optimal encoding
tree T ∗

s (lines 19 and 20 in Algorithm 2).
In the optimal encoding tree T ∗

s , the structural entropy assigned to each node, as spec-
ified in Equation 10, quantifies the uncertainty of a single-step random walk reaching its
associated vertex community from its parent’s community. Treating this uncertainty as the
node weight, we design an aggregation function to compute the node representations in
T ∗
s . For each leaf node ν ∈ T ∗

s with a corresponding state set Vν = s, its representation
is defined as hν = s. For each non-leaf node α, we normalize the weights of its children
using the softmax function to ensure a probabilistic distribution, then compute its node
representation as follows:

hα =

Lα∑
i=1

exp
(
HT ∗

s (G∗
s;αi)

)∑Lα
j=1 exp (HT ∗

s (G∗
s;αj))

· hαi . (15)

The representation of each child node hλi
of the root node λ is defined as an abstract state

zsi , where its corresponding state set is denoted as Si ⊂ S. Thus, the set of abstract states
is defined as Zs = {zs1, zs2, . . . , zsLλ

}.
At timestep t, the original environmental state st ∈ S is embedded into a low-dimensional

vector and mapped to an abstract state zst based on its dot products with the abstract rep-
resentations in Zs, as follows:

zst = arg max
zsi∈Zs

⟨fs
ϕs

(st), z
s
i ⟩, (16)
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Algorithm 2: The Undirected Optimization Algorithm

1: Input: a one-layer initial encoding tree T
2: Output: an optimized two-layer encoding tree T ∗

3: while the tree height hT < 2 do
4: i∗ ← arg maxi{Spari(T )}
5: # determine whether the iteration is terminated
6: if Spari∗(T ) = 0 then
7: break
8: end if
9: # execute optimizations on selected nodes

10: for α ∈ Ui∗ do
11: T ← ηst(Tα)
12: T ← ηcp(Tα)
13: hT ← hT + 1
14: end for
15: # adjust and update tree structure
16: for i = i∗ + 1 to hT do
17: update Ui

18: end for
19: end while
20: T ∗ ← T
21: return T ∗

where f s
ϕs

is the encoding function for states. Similarly, the abstract action variable Za is
defined as Za = {za1 , za2 , . . . , zaLλ

}, where each abstract action zai corresponds to a subset
Ai ⊂ A. In the discrete action space A, the original actions associated with the embedded
actions in Ai collectively form an action subspace, denoted as Ai ⊂ A.

4.2 Directed Structural Entropy

To address the limitations posed by undirected constraints in existing structural information
principles (Li and Pan, 2016; Zeng et al., 2023a,b), we define and optimize high-dimensional
structural entropy for directed graphs, enabling subsequent accurate representation of key
transition dynamics between abstract states in RL problems.

Given a directed graph Gdir = (V,Edir,Wdir) with non-negative edge weights, we in-
troduce Algorithm 3 to modify its structure with two primary objectives: (i) to ensure its
strong connectivity, meaning there exists a directed path between any pair of vertices, and
(ii) to make it more conducive to a random walk process by normalizing edge weights such
that the weighted out-degree sum of each vertex is 1. To achieve this, we first identify
the strongly connected components of Gdir (lines 3 and 4 in Algorithm 3) and introduce
directed edges with minimal weights to establish connectivity between these components
(lines 5 - 9 in Algorithm 3). Then, for each vertex v ∈ V , we normalize the weights of all
outgoing edges by dividing each weight by the vertex’s weighted out-degree sum (lines 11 -
13 in Algorithm 3). The following proposition confirms the existence and uniqueness of the
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Algorithm 3: The Directed Graph Adjustion Algorithm

1: Input: a directed, weighted graph with non-negative edge weights
Gdir = (V,Edir,Wdir)

2: Output: a strongly connected, directed graph G′
dir with normalized edge weights

3: # identify strongly connected components (SCCs)
4: SCCs← Kosaraju-SCC(G)
5: GSCC = (VSCC , ESCC)← create a meta-graph of connected components
6: # ensure strong connectivity between SCCs
7: for (SCCi, SCCj) that lack a directed path in GSCC do
8: Gdir ← introduce a minimal-weight edge from SCCi to SCCj

9: end for
10: # normalize edge weights to weighted out-degree sum to 1
11: for (vi, vj) ∈ Edir do
12: Wdir(vi, vj)←Wdir(vi, vj)/

∑
(vi,vk)∈E Wdir(vi, vk)

13: end for
14: G′

dir ← Gdir

15: return G′
dir

stationary distribution πs over the vertices of the adjusted graph G′
dir, forming the basis

for the definition and optimization of directed structural entropy.

Proposition 1 Given a strongly connected, directed graph G′
dir = (V,E′

dir,W
′
dir) with non-

negative edge weights, where the weighted out-degree of each vertex sums to 1, its stationary
distribution πs exists and is unique. This distribution corresponds to the unique eigenvector
associated with the dominant eigenvalue 1 of the adjacency matrix A′

dir.

Two distinct proofs of this proposition, one based on the Perron-Frobenius theorem and
the other on the properties of Markov chains, are provided in Appendix C.1.

For the strongly connected graph G′
dir, we compute the stationary distribution πs over

all vertices and define the one-dimensional directed structural entropy as follows:

H1(G′
dir) = −

∑
v∈V

πs(v) · log πs(v), (17)

where πs(v) denotes the stationary probability of vertex v in G′
dir. Using the stationary

distribution πs, we refine the terms gα and Vα for each non-root node α in the encoding
tree Tdir of G′

dir, following Equation 10, and redefine its assigned entropy as follows:

Vα =
∑
vi∈V

∑
vj∈Vα

[
πs(vi) ·W ′

dir(vi, vj)
]

, (18)

gα =
∑
vi /∈Vα

∑
vj∈Vα

[
πs(vi) ·W ′

dir(vi, vj)
]

, (19)

HTdir(G′
dir;α) = − gα

vol(G′
dir)
· log2

Vα
Vα−

, (20)
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where the volume of G′
dir, vol(G′

dir), is defined as the sum of in-degrees and out-degrees of
all vertices:

vol(G′
dir) =

∑
v∈V

(d+v + d−v ). (21)

Thus, the K-dimensional directed structural entropy of G′
dir is redefined as follows:

HTdir(G′
dir) =

∑
α∈Tdir,α ̸=λ

HTdir(G′
dir;α), HK(G′

dir) = min
Tdir

{
HTdir(G′

dir)
}

, (22)

where Tdir ranges over all encoding trees with a maximal height of K.
Expanding upon the merge (ηmg) and combine (ηcb) operators introduced by deDoc

(Li et al., 2018), we develop an optimization approach for directed structural entropy
HTdir(G′

dir) to determine the optimal tree-structure partitioning strategy T ∗
dir. To calcu-

late the entropy variation caused by a single merge or combine operation on sibling nodes
α, β ∈ Tdir, we introduce gα,β defined as the total weight of edges connecting vertices in Vα

to vertices in Vβ as follows:

gα,β =
∑
vi∈Vα

∑
vj∈Vβ

πs(vi) ·W ′
dir(vi, vj). (23)

The entropy variation caused by a single merge operation on sibling nodes α, β ∈ Tdir is
denoted as ∆mg(Tdir, α, β) and is calculated as follows:

∆mg(Tdir, α, β) =
gα,β + gβ,α
vol(G′

dir)
· log2

Vα−

Vµmg

−
∑Lα

i ̸=j gαi,αj

vol(G′
dir)

· log2
Vµmg

Vα
−

∑Lβ

i ̸=j gβi,βj

vol(G′
dir)

· log2
Vµmg

Vβ
,

(24)
where µmg is the newly added node via the merge operation. The entropy variation caused
by a single combine on sibling nodes α, β ∈ Tdir is denoted as ∆cb(Tdir, α, β) and is calculated
as follows:

∆cb(Tdir, α, β) =
gα,β + gβ,α
vol(G′

dir)
· log2

Vα−

Vµcb

, (25)

where µcb is the newly added node via the combine operation. Detailed deviation of these
entropy variations is provided in Appendix B.1.

We summarize the iterative optimization process in Algorithm 4. At each iteration, we
traverse all pairs of sibling nodes (lines 5 and 11 in Algorithm 4) and selectively execute
either the merge or combine operator (lines 7 and 13 in Algorithm 4), choosing the operation
that maximally reduces structural entropy while ensuring the tree height remains below K
(line 3 in Algorithm 4). When no node pair satisfies ∆mg(Tdir, α, β) > 0 or ∆cb(Tdir, α, β) >
0 (lines 6 and 12 in Algorithm 4), we terminate the iteration and output T as the optimal
encoding tree T ∗ (lines 18 and 19 in Algorithm 4).

Adding directed edges between strongly connected components in the directed graph
Gdir may alter the original topological relationships, potentially disrupting irreversible en-
vironmental constraints among vertices. To mitigate this issue, Algorithm 3 assigns signif-
icantly smaller weights to these additional edges compared to the original transition edges.
This guarantees minimal interference with environmental constraints. Specifically, Algo-
rithm 3 carefully ensures the stationary distribution πs exists and remains unique, while
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Algorithm 4: The Directed Optimization Algorithm

1: Input: an one-layer initial encoding tree Tdir, K ∈ Z+

2: Output: the K-layer optimal encoding tree T ∗
dir

3: while tree height hTdir
< K do

4: # execute merge optimization
5: (α∗, β∗)← arg max{∆mg(Tdir, α, β)} via Equation 24
6: if ∆mg(Tdir, α

∗, β∗) > 0 then
7: Tdir ← ηmg(Tdir, α

∗, β∗)
8: continue
9: end if

10: # execute combine optimization
11: (α∗, β∗)← arg max{∆cb(Tdir, α, β)} via Equation 25
12: if ∆cb(Tdir, α

∗, β∗) > 0 then
13: Tdir ← ηcb(Tdir, α

∗, β∗)
14: continue
15: end if
16: break
17: end while
18: T ∗

dir ← Tdir

19: return T ∗
dir

{… , 𝑧𝑧𝑖𝑖𝑠𝑠 ∈ 𝑍𝑍𝑠𝑠 , … }
{… , 𝑆𝑆𝑖𝑖 ⊂ 𝑆𝑆, … }

a) abstract states

𝑧𝑧𝑖𝑖𝑠𝑠~𝑆𝑆𝑖𝑖

𝑧𝑧𝑗𝑗𝑠𝑠~𝑆𝑆𝑗𝑗

0.4

0.27

0.12
0.2

0.005

0.005

b) abstract transitions

𝜋𝜋𝑠𝑠𝐻𝐻𝐾𝐾(𝐺𝐺𝑑𝑑𝑖𝑖𝑑𝑑′ )𝑊𝑊𝑑𝑑𝑖𝑖𝑑𝑑

𝑉𝑉𝜆𝜆 = 𝑍𝑍𝑠𝑠

< ℐ𝜅𝜅 ,𝜋𝜋𝜅𝜅 ,𝒯𝒯𝜅𝜅 >,𝛼𝛼 ∈ 𝑈𝑈ℎ𝑧𝑧
𝒦𝒦ℎ~𝑈𝑈ℎ𝑧𝑧 ⊂ 𝑍𝑍𝑠𝑠

d) skill discovery

𝑅𝑅𝑖𝑖𝑖𝑖(𝑧𝑧𝑖𝑖𝑠𝑠, 𝑧𝑧𝑗𝑗𝑠𝑠)

c) directed optimization

Figure 4: The skill discovery based on the directed structural information.

Algorithm 4 employs a greedy strategy prioritizing edges with substantial original weights.
As a result, our approach preserves the structural consistency of the encoding tree before
and after directed graph adjustment. Consequently, our graph adjustment method estab-
lishes an effective and principled framework for computing the structural entropy of directed
graphs, preserving essential environmental constraints of the original task. This ensures the
rationality and consistency of subsequent skill-based and role-based learning processes.

4.3 Skill Discovery

In this subsection, we construct an abstract state transition graph to model the decision-
making process and minimize directed structural entropy to obtain the optimal hierarchical
partitioning of abstract states. Within this tree structure, we facilitate skill discovery
across hierarchical communities to capture abstract transition dynamics, accounting for the
different temporal properties of the RL environment, as illustrated in Figure 4.

Taking the abstract states in Zs as vertices, we construct a weighted, directed graph
Gdir = (Zs, Edir,Wdir), where each vertex represents an abstract state with a corresponding
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subset of primitive states. A directed edge (zsi , z
s
j ) ∈ Edir is established if there exists an

original transition between the corresponding state subsets Si and Sj . The edge weight
Wdir(z

s
i , z

s
j ) is determined based on the occurrence frequency of these transitions in the

sampled batch. To ensure strong connectivity and normalization, we refine the graph Gdir

using Algorithm 3, resulting in the adjusted graph G′
dir. We apply Algorithm 4 to derive

the optimal encoding tree T ∗
dir, constrained to a maximum height of K.

For any integer 0 ≤ h ≤ K, representing a hierarchical level in T ∗
dir, the discovered

options associated with the node set U z
h at layer h in T ∗

dir are defined as follows:

Kh = {⟨Iκi , πκi , Tκi⟩ | αi ∈ U z
h}. (26)

Each option κi ∈ Kh is characterized by its initiation set Iκi , policy function πκi , and
termination condition Tκi .

In the stationary distribution πs, the distribution probability πs(z
s
j ) assigned to each

abstract state zsj reflects its criticality in the historical transition trajectory. Abstract states
with higher probabilities are more frequently visited and can be considered critical for task
completion. To leverage this notion of state criticality, we define an intrinsic reward function
Rin based on the stationary distribution πs over abstract states in G′

dir. The reward for
transitioning between abstract states zsj and zsk is computed as follows:

Rin(zsj , z
s
k) = πs(z

s
k)− πs(z

s
j ). (27)

For each option κi ∈ Kh, the termination condition Tκi consists of abstract states where
no further positive intrinsic reward is accumulated, given by:

Tκi(z
s
j ) =

{
1 if arg maxzsk∈Zs

αi
πs(z

s
k) = zsj ,

0 otherwise,
(28)

where Zs
αi
⊂ Zs denotes the subset of abstract states corresponding to the node αi in T ∗

dir.
The initiation set Iκi is defined as the set of states not included in the termination condition
of κi, given by:

Iκi = {zsj | zsj ̸= arg max
zsk∈Zs

αi

πs(z
s
k)}. (29)

The option policy πκi is trained by maximizing the expected long-term cumulative intrinsic
reward, given by:

π∗
κi

= arg max
πκi

EP

Tκi (z
s
j )∑

t=0

γtRin(zsj , z
s
k)Tκi(z

s
j )

 , (30)

where zsj and zsk correspond to the abstract states associated with the environmental states
st and st+1 at timestep t, respectively.

Classical skill discovery approaches (Jinnai et al., 2019; Machado et al., 2023) employ
eigenvalue decomposition to derive the eigenoption κe, which corresponds to the principal
eigenvector associated with the largest eigenvalue of the transition matrix A′

dir of graph G′
dir.

The following theorem establishes the relationship between our skill discovery method and
these classical approaches to highlight the theoretical properties of our framework.
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(a) Four-room Navigation
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Figure 5: The identified skills under different hierarchy levels (h values) in the
four-room navigation task.

state
abstraction 𝑠𝑠𝑡𝑡 → 𝑓𝑓𝜙𝜙s

𝑠𝑠 → 𝑧𝑧𝑡𝑡𝑠𝑠 ∈ 𝑍𝑍𝑠𝑠

𝑍𝑍𝛼𝛼1
𝑠𝑠 × 𝒜𝒜 → [0,1]

𝑍𝑍𝛼𝛼2
𝑠𝑠 × 𝒜𝒜 → [0,1]

𝑍𝑍𝛼𝛼3
𝑠𝑠 × 𝒜𝒜 → [0,1]

𝜋𝜋𝑘𝑘ℎ

𝜅𝜅1 𝜋𝜋𝜅𝜅1

𝜋𝜋𝜅𝜅2

𝜋𝜋𝜅𝜅3
𝑎𝑎 ∈ 𝒜𝒜

𝜅𝜅2

𝜅𝜅3

Figure 6: The single-agent skill-based learning in SIDM framework.

Theorem 2 For h = K, the discovered set Kh consists of a single option κ1, which is
equivalent to the eigenoption κe associated with the principal eigenvector of the adjusted
transition matrix A′

dir.

The detailed proof is provided in Appendix C.2.

By adjusting the parameter h, our skill discovery method captures the temporal struc-
ture of the environment across different time scales. Figure 5 illustrates the discovered
options in the four-room domain for varying values of h. For h = K, the sole option in Kh

motivates the agent toward the state with the highest stationary probability in πs, which
lies along the environment’s diagonal. For smaller values of h, the skill set enables finer-
grained navigation over shorter time scales within a subspace of abstract states, where state
transitions cover shorter distances, leading to more localized and refined options.

4.4 Skill-based Learning

In the single-agent decision-making environment, we apply the previously introduced state
abstraction and skill discovery mechanisms to construct a hierarchical two-layer skill-based
learning framework, as illustrated in Figure 6. To model the multi-scale temporal structure
of the environment, we define the overall skill set K as the union of the identified skill sets
obtained at hierarchical levels h = K and h = K − 1. The complete procedure for the
proposed two-layer skill-based learning framework is outlined in Algorithm 5.

At each timestep t, the agent observes the current environmental state st and applies
the state abstraction function fs

ϕs
to map st to an abstract representation zst ∈ Zs (line 5

in Algorithm 5). Based on the abstract state zst , the high-level policy πh
k : Zs × K → [0, 1]

selects an option κi from the discovered set K (line 6 in Algorithm 5). The low-level option
policy πκi : Zs

αi
× A → [0, 1] maps the abstract state zst to an action distribution over A,
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Algorithm 5: The Single-Agent Skill-Based Learning Method

1: Input: batch size n, update interval tup, replay buffer B
2: Output: hierarchical skill policies πh

κ and {πκ1 , πκ2 , . . . }
3: for each episode do
4: for each timestep t do
5: zst ← obtain an abstract representation of st via Equation 16
6: κi ← select a skill from the skill space K based on the high-level policy πh

k

7: τt = (st, at, st+1, rt)← collect transition based on the low-level policy πκi and
environmental state st

8: B ← B
⋃
τt

9: if t mod tup == 0 then
10: St, At, St+1, Rt ← sample a batch from B
11: Gs ← construct the complete state graph from variables St and St+1

12: G∗
s ← filter out trivial edges from Gs

13: T ∗
s ← generate the optimal encoding tree

14: Zs ← aggregate states to obtain abstract embeddings via Equation 15
15: K ← update the skill set via the skill discovery method
16: Lde,Lrl ← calculate the decoding loss and training loss
17: optimize the abstraction function and hierarchical policies by minimizing the

loss Lde and Lrl
18: end if
19: end for
20: end for

𝜋𝜋𝜌𝜌1:𝑆𝑆 × 𝒜𝒜1 → [0,1]

𝜋𝜋𝜌𝜌2:𝑆𝑆 × 𝒜𝒜2 → [0,1]

𝜋𝜋𝜌𝜌3:𝑆𝑆 × 𝒜𝒜3 → [0,1]𝒜𝒜𝑖𝑖 ∈ 𝒜𝒜

action
abstraction

𝒂𝒂

𝜋𝜋𝑟𝑟ℎ

Figure 7: The multi-agent role-based learning in SIDM framework.

from which it samples and executes an action at. This results in a transition to a new
environmental state st+1 and a received reward rt (line 7 in Algorithm 5). Low-level policy
training is performed using a single-agent underlying RL algorithm that optimizes both
environmental and intrinsic rewards. The associated training loss is denoted as Lrl.

At regular update intervals tup, we retrieve samples containing state-action transitions
(St, At, St+1, Rt) of size n from the replay buffer B (line 10 in Algorithm 5). Next, the
state abstraction mechanism (Subsection 4.1) and skill discovery method (Subsection 4.3)
are used to refine the abstract state set Zs and update the skill set K (lines 11 - 15 in
Algorithm 5). Finally, we calculate the training losses Lde and Lrl to optimize the state
abstraction function f s

ϕs
and enhance the hierarchical policy learning (lines 16 and 17 in

Algorithm 5).
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Algorithm 6: The Multi-Agent Role-Based Learning Method

1: Input: batch size n, update interval tup, replay buffer B
2: Output: hierarchical role policies πr

h and {πρ1 , πρ2 , . . . }
3: for each episode do
4: for each timestep t do
5: for each agent ni ∈ N do
6: ρj ← select a role from the role space Ψ based on the high-level policy πh

r

7: ati ← select an action based on the role policy πρj and environmental state st
8: end for
9: B ← B

⋃
(st,at, st+1, rt)

10: if t mod tup == 0 then
11: St, At, St+1, Rt ← sample a batch from B
12: Ga ← construct the complete action graph from the variable At

13: G∗
a ← filter out trivial edges from Ga

14: T ∗
a ← generate the optimal encoding tree

15: Za ← aggregate actions to obtain abstract embeddings via Equation 15
16: Ψ← update the role set
17: Lde,Lmarl ← calculate the decoding loss and training loss
18: optimize the abstraction function and hierarchical policies by minimizing the

losses Lde and Lmarl

19: end if
20: end for
21: end for

4.5 Role-based Learning

In fully cooperative multi-agent settings with discrete action spaces, we leverage the state
and action abstraction mechanisms described earlier to construct a hierarchical two-layer
role-based learning framework, as illustrated in Figure 7. In this work, we define the set
of abstract actions Za as the role set Ψ, where each role ρi ∈ Ψ corresponds to an action
subspace Ai ⊂ A. The complete procedure for the proposed two-layer role-based learning
framework is outlined in Algorithm 6.

At each timestep t, for each agent ni ∈ N , the high-level policy πh
r : τi × Ψ → [0, 1]

selects a role ρj and its corresponding action subspace Aj from the role set Ψ to complete
the role assignment (line 6 in Algorithm 6). The low-level role policy πρj : S × Aj → [0, 1]
determines an action distribution over Aj , from which it samples and executes an action
ati ∈ Aj given the global state st ∈ S (line 7 in Algorithm 6). The individual actions of
all agents collectively form a joint action at, which produces a joint reward rt and leads to
the subsequent global state st+1. To train the low-level role policies, we employ an existing
MARL algorithm in which agents sharing the same role utilize a shared policy network.
The associated training loss is denoted as Lmarl.

At regular update intervals tup, we retrieve samples containing state-action transitions
(St, At, St+1, Rt) of size n from the replay buffer B (line 11 in Algorithm 6). Subsequently,
we apply the action abstraction mechanism to refine the sets Zs and Ψ (lines 12 - 16
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in Algorithm 6). Finally, we calculate the training losses Lde and Lmarl to optimize the
hierarchical policies (lines 17 and 18 in Algorithm 6).

4.6 Time Complexity Analysis

This subsection analyzes the time complexity of the abstraction mechanism (Subsection 4.1)
and skill discovery (Subsection 4.3) in our SIDM framework to evaluate its computational
feasibility. The total time complexity of the abstraction mechanism is given by O(n2 +
n + m · log2 n), where n = |V | and m = |E| denote the numbers of vertices and edges,
respectively, in the state or action graph. During algorithm execution, n represents the
batch size sampled from the replay buffer, while m denotes the number of edges retained
after the sparse operation in Algorithm 1, which is approximately kn

2 . Specifically, graph
construction has a complexity of O(n2 + n), attributable to O(n2) for complete graph
construction and O(n) for filtering insignificant edges. According to the analysis (Pan
et al., 2021), the process of optimizing a high-dimensional encoding tree through the stretch
and compress operators incurs a time complexity of O(m · log2 n). The aggregation of a
K-layer encoding tree with n leaves has a proven upper bound of O(n). Since the number
of abstract states in the transition graph does not exceed n, the time complexity of skill
discovery is capped at O(m · log2 n + n).

5 Experimental Setup

To validate the performance advantage of our SIDM framework, we have conducted exten-
sive comparative experiments in both single-agent decision-making and multi-agent collabo-
ration scenarios. Specifically, we evaluate three key components of the SIDM framework: the
state abstraction mechanism (SISA), the skill-based learning method (SISL), and the role-
based learning method (SIRD). Each method is compared against state-of-the-art baselines
using established and challenging benchmarks. Each experiment consists of ten indepen-
dent runs using different random seeds to ensure fairness. We report the average reward to
assess effectiveness and the standard deviation to measure stability over all episodes after
convergence. Additionally, we measure efficiency by counting the environmental timesteps
needed to reach specific rewards.

5.1 Benchmarks

5.1.1 State Abstraction

We evaluate the SISA mechanism for offline state abstraction in a visual Gridworld en-
vironment. Following the approach in Allen et al. (2021), each (x, y) coordinate in the
6× 6 Gridworld is linked to a high-dimensional noisy image. During offline training of the
state abstraction mechanism, the agent explores the environment by interacting with these
images using a random policy with four directional actions, without access to actual grid
positions. During DQN policy training (Mnih et al., 2015), the abstraction function, which
maps original images to abstract state representations, remains fixed.

Following the offline evaluation of the SISA mechanism in Gridworld, we apply it in an
online setting to various image-based continuous control tasks from the DeepMind Control
Suite (DMControl) (Tunyasuvunakool et al., 2020), where both the abstraction mechanism
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and policy network are trained simultaneously. Specifically, our experiments focus on nine
DMControl tasks: ball in cup-catch, cartpole-swingup, cheetah-catch, finger-spin,
reacher-easy, walker-walk, hopper-hop, hopper-stand, and pendulum-swingup.

5.1.2 Skill-based Learning

We evaluate the skill-based learning method, SISL, in robotic control environments using the
MuJoCo physics simulator (Todorov et al., 2012), including a bipedal robot (Gehring et al.,
2021) and a 7-DoF fetch arm (Silver et al., 2018). For the bipedal robot experiments, we
select six tasks requiring diverse skills: Hurdles (jumping), Limbo (torso control), Stairs
(intricate foot manipulation), and PoleBalance (body balance). For the 7-DoF Fetch arm
experiments, we select four downstream tasks: Table Cleanup, Slippery Push, Pyramid
Stack, and Complex Hook. To emphasize efficient exploration, all tasks are designed with
sparse rewards, which are awarded only when a goal or subgoal is achieved.

5.1.3 Role-based Learning

For multi-agent role-based learning, we evaluate the role-based method, SIRD, using the
standard Centralized Training with Decentralized Execution (CTDE) benchmark in com-
plex, high-control environments: the StarCraft II micromanagement (SMAC) suite (Samvelyan
et al., 2019). In these micromanagement scenarios, each agent autonomously controls an
allied unit based on local observations, while a built-in AI controls all enemy units. At
each timestep, each agent selects an action from a discrete action space, including four-
directional movement, stopping, executing a no-op, and selecting an enemy or ally unit
to attack or heal. The more challenging maps, classified as hard and super-hard, present
significant exploration challenges that require intricate collaborative strategies among the
agents. Thus, we primarily concentrate on the performance of the SIRD method and other
baseline approaches in the hard and super-hard maps. In summary, the multi-agent collab-
orative SMAC tasks consist of three difficulty levels: easy (1c3s5z, 2s3z, 2c vs 1sc, and
10m vs 11m), hard (2c vs 64zg, 3s vs 5z, 5m vs 6m, and bane vs bane), and super hard
(3s5z vs 3s6z, corridor, MMM2, and 27m vs 30m).

For each benchmark, we provide the task description along with detailed settings for
observations, actions, and rewards, as presented in Appendix D.

5.2 Baselines

5.2.1 State Abstraction

For offline state abstraction, we select several baseline algorithms from the visual Gridworld
environment, each designed to optimize distinct learning objectives. These baselines are
detailed as follows:

• PixelPred (Kaiser et al., 2019): A model-based RL approach that leverages video
prediction to reduce environment interactions.

• Autoenc (Lee et al., 2020a): An algorithm that decouples representation learning
from policy learning by constructing a compact latent space.

•Markov (Allen et al., 2021): A state abstraction method that preserves the Markov
property using inverse model estimation and temporal contrastive learning.
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• IAEM (Zhu et al., 2022): A representation model that captures the invariance in
action effects across states by explicitly utilizing action-effect relations.

For online state abstraction, we adopt state representation and data augmentation algo-
rithms that have demonstrated superior performance in the DMControl Suite, as described
in detail below:

• RAD (Laskin et al., 2020b): A data augmentation approach that applies trans-
formations such as random cropping and color jittering to visual inputs.

• CURL (Laskin et al., 2020a): A contrastive learning-based method that extracts
high-level features from raw pixels to enhance pixel-based control performance.

• DBC (Zhang et al., 2020): A representation learning technique that utilizes bisim-
ulation metrics to learn task-relevant state representations.

• SAC-AE (Yarats et al., 2021b): A model-free RL approach that integrates auxil-
iary autoencoder-based losses to enhance representation learning.

• DrQv2 (Yarats et al., 2021a): A model-free RL algorithm that leverages data
augmentation to improve efficiency in visual continuous control.

• Simsr (Zang et al., 2022): A method that learns robust state representations from
image-based observations to achieve policy robustness.

• CMID (Dunion et al., 2024): A method that learns disentangled representations
by minimizing conditional mutual information between features.

5.2.2 Skill-based Learning

For skill-based learning, we integrate both skill-based and non-skill-based control methods,
each demonstrating strong performance in robotic manipulation tasks. The baselines for
the bipedal robot are detailed as follows:

• SAC (Haarnoja et al., 2018): A model-free algorithm using the maximum entropy
framework that combines off-policy updates with a stochastic actor-critic formulation.

• Switching Ensemble (Nachum et al., 2019): A hierarchical RL framework that
leverages hierarchy-inspired techniques instead of relying on rigidly imposed structures.

• HIRO (Nachum et al., 2018): A hierarchical RL method that leverages off-policy
experience for both higher- and lower-level policies.

•HIDIO (Zhang et al., 2021): A hierarchical RL algorithm that learns task-agnostic
options through self-supervised entropy minimization.

• HSD-3 (Gehring et al., 2021): A hierarchical skill learning framework that auto-
matically balances general and specific skills in an unsupervised manner.

For the 7-DOF robotic arm control task, we select high-performing methods from this
benchmark and introduce two additional baselines, DSAA (Attali et al., 2022) and Louvain
(Evans and Şimşek, 2023), that closely resemble our approach. This allows for a more direct
comparison, further emphasizing the advantages of our skill-based learning method. These
baselines are detailed as follows:

• SPiRL (Pertsch et al., 2021): An RL method that learns a skill prior to offline
experience, guiding the exploration of transferable skills.

• BC+Fine-Tuning (Beeson and Montana, 2022): An offline approach that mit-
igates overestimation bias by behavioral cloning for stable fine-tuning and refined policies.
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• PaRRot (Singh et al., 2020): A pre-training method for RL that learns behavioral
priors from past tasks, enabling rapid adaptation to robotic manipulation tasks.

• Reskill (Rana et al., 2023): A skill-based RL approach that accelerates exploration
by using state-conditioned generative models and low-level residual policy.

• DSAA (Attali et al., 2022): A method for learning sparse, discrete state-action
abstractions through successor representations and max-entropy regularization.

• Louvain (Evans and Şimşek, 2023): A hierarchical skill learning method that
automatically generates skill hierarchies based on modularity maximization.

For offline pretraining-based baselines (e.g., SPiRL), we follow the warm-start method
(Zhou et al., 2025), which consists of pretraining, warmup, and online update phases, to
enable efficient fine-tuning of the RL agent without retaining or jointly training on the offline
dataset. The Louvain baseline, which is limited to discrete state spaces, is integrated into
our hierarchical framework by applying Louvain clustering to our similarity-guided state
graph to achieve multi-level skill discovery and skill-based learning.

5.2.3 Role-based Learning

For role-based learning, we evaluate both role-based and non-role-based approaches for
multi-agent coordination, all of which achieve state-of-the-art performance in the SMAC
benchmark. These baselines are detailed as follows:

• IQL (Tampuu et al., 2017): A multi-agent extension of Deep Q-Learning that
studies cooperation and competition between autonomous agents learning from visual input.

• VDN (Sunehag et al., 2018): A cooperative MARL method that decomposes
a team’s value function into individual agent values, addressing challenges in partially-
observable environments.

• QMIX (Rashid et al., 2018): A value-based multi-agent method that combines
centralized training with decentralized execution by enforcing monotonicity in the joint
action values using a mixing network.

• QPLEX (Wang et al., 2021a): A MARL method that improves scalability and
stability by using a duplex dueling network architecture to efficiently factorize the joint
value function.

• QTRAN (Son et al., 2019): A MARL approach that generalizes value decom-
position by proposing a new factorization method for joint action-value functions without
restrictive structural constraints.

• COMA (Foerster et al., 2018): A counterfactual multi-agent actor-critic method
that uses a centralized critic and decentralized actors, addressing credit assignment by
marginalizing out a single agent’s action while keeping others fixed.

• ACE (Li et al., 2023): A MARL algorithm that solves the non-stationarity problem
using bidirectional action-dependent Q-learning, turning multi-agent decision-making into
a single-agent process.

• RODE (Wang et al., 2021b): A role-based RL method that discovers roles by
clustering actions based on their environmental and inter-agent effects, leading to more
efficient learning and policy generalization.
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5.3 Experimental Setting

In our proposed SIDM framework, the maximum heights of encoding trees are set to K = 2
for undirected optimization in state/action abstraction and K = 5 for directed optimization
in skill discovery.

For the SISA mechanism, we set a latent dimension of 2, a batch size of 2048, a learning
rate of 0.003, and the Adam optimizer for training the DQN. We set a maximum episodic
step of 1000, a batch size of 16, and a discount factor γ for the offline abstraction. In the
online abstraction, we set a latent dimension of 50, a replay buffer size of 1e5, a batch size
of 128, a discount factor of 0.99, and the Adam optimizer. We use the Soft Actor-Critic
(SAC) algorithm (Haarnoja et al., 2018) as the underlying single-agent RL method, which
is integrated with various state abstraction approaches. For the state graph, we set the
number of vertices to twice the batch size and determine the number of edges according to
Algorithm 1.

For the SISL method, we adopt the standardized SAC algorithm within the correspond-
ing state subspace to train the low-level option policy for each discovered option. For the
high-level policy, we extract the abstract state with the highest probability within each
state subspace to construct the set of termination states. We extend the SAC algorithm to
the discrete termination set by inputting its continuous output into a Softmax layer. The
resulting output is a probability distribution over the termination states. For all experi-
ments, we use neural networks with 4 hidden layers, skip connections, and ReLU activations.
During the training process, we use the Adam optimizer with a replay buffer size of 1e6, a
mini-batch size of 256, a learning rate of 0.001, and a discount factor of 0.99. Similarly, for
the state graph, we set the number of vertices to twice the batch size and determine the
number of edges according to Algorithm 1.

For the SIRD method, we share a trajectory encoding network with two fully connected
layers and a GRU layer for each agent, followed by a linear network without hidden layers
or activation functions, which serves as the role policy. The outputs of the role policies
are fed into separate QMIX-style mixing networks (Rashid et al., 2020), each containing a
32-dimensional hidden layer with ReLU activation, to estimate global action values. For
all SMAC experiments, the dimension of action representations is set to 20, the optimizer
is set to RMSprop with a learning rate of 0.0005, and the discount factor is set to 0.99.
For the action graph, we set the number of vertices to the number of enemies plus six
general discrete actions, and the number of edges is automatically determined according to
Algorithm 1.

5.4 Implementation Details

We implement the SISA mechanism using Python 3.8.15 and PyTorch 1.13.0, the SISL
method using Python 3.9.1 and PyTorch 1.9.0, and the SIRD method using Python 3.5.2
and PyTorch 1.5.1. All experiments are conducted on five Linux servers, each equipped
with an NVIDIA RTX A6000 GPU and an Intel i9-10980XE CPU clocked at 3.00 GHz.
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Figure 8: Average rewards over all episodes (left) and visualization of the 2-
dimensional abstract state representations (right) for the navigation task within
the 6× 6 Gridworld environment.

6 Evaluation and Discussion

6.1 State Abstraction

We conduct comparative empirical experiments to demonstrate the benefits of our state
abstraction mechanism SISA, focusing on offline abstractions in the visual Gridworld envi-
ronment and online abstractions in continuous control tasks.

6.1.1 Offline Abstraction for Visual Gridworld

In the Gridworld environment, we illustrate the learning curves of SISA and other baselines
for the offline navigation task in Figure 8. For reference, we also include the learning curve
of the underlying DQN, labeled as TrueState, which is trained on ground-truth positions
(x, y) without any observational noise or abstraction function. For each learning curve, we
indicate the convergence point in parentheses within the figure. As shown in Figure 8 (left),
SISA reaches convergence at 76 epochs with an average episodic reward of -7.17, achieving
the smallest standard deviation and outperforming all baselines. Relative to the TrueState
performance of (82,−7.31), SISA maintains its advantages in both effectiveness and stability.
Furthermore, Figure 8 (right) presents the 2-dimensional abstract representations of noisy
observations for the 6×6 Gridworld, with different colors indicating ground-truth positions.
Our abstraction mechanism more accurately reconstructs the relative positions of ground-
truth states compared to the baselines. This success arises from an adaptive trade-off
between filtering irrelevant details and preserving essential information, achieved through
hierarchical aggregation within the optimal encoding tree.

6.1.2 Online Abstraction for Continuous Control

In the online abstraction experiments, we evaluate SISA and baseline methods across nine
continuous tasks from the DMControl suite. Table 1 summarizes the average value and
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Table 1: Summary of the mean episodic rewards for different tasks from DM-
Control: “average value ± standard deviation” and “average improvement (ab-
solute value in percentage)”. The best performance of our model is highlighted
in bold, while the best performance among baselines is underlined.

Domain, Task ball in cup-catch cartpole-swingup cheetah-run finger-spin reacher-easy

DBC 168.95± 84.76 317.74± 77.49 432.24± 181.43 805.90± 78.85 191.44± 69.07
SAC-AE 929.24± 39.14 839.23± 15.83 663.71± 9.16 898.08± 30.23 917.24± 38.33

RAD 937.97± 6.77 825.62± 9.80 802.53± 8.73 835.20± 93.26 908.24± 25.62
CURL 899.03± 30.61 824.46± 18.53 309.49± 8.15 949.57± 15.71 919.71± 28.03
Markov 919.10± 38.14 814.94± 17.61 642.79± 65.92 969.91± 8.41 806.34± 131.40
DrQv2 275.85± 44.87 573.10± 33.11 583.85± 11.52 629.23± 18.38 406.09± 66.09
Simsr 837.59± 18.43 803.25± 21.30 708.20± 2.81 694.17± 42.84 883.52± 57.19
CMID 529.03± 37.44 817.49± 14.36 624.78± 15.72 843.74± 21.87 818.49± 33.07

SISApr 946.29± 8.63 858.21± 6.31 806.67± 8.61 970.45± 8.75 924.52± 19.04
SISA 947.66± 7.03 861.37± 3.26 803.32± 5.51 968.59± 6.54 941.71± 16.04

Abs.(%) Avg. ↑ 9.69(1.03) 22.14(2.64) 4.14(0.52) 0.54(0.06) 22.0(2.39)

Domain, Task walker-walk hopper-hop hopper-stand pendulum-swingup average reward

DBC 331.97± 108.40 - - 305.08± 86.78 284.55± 76.43
SAC-AE 895.33± 56.25 - - - 582.34± 25.07

RAD 907.08± 13.02 181.20± 1.80 891.87± 10.04 843.84± 8.99 792.61± 19.78
CURL 885.03± 9.88 - - - 541.58± 13.69
Markov 918.44± 12.58 184.66± 6.48 864.70± 34.28 162.58± 1.57 698.16± 35.15
DrQv2 588.19± 11.13 - 762.91± 11.31 821.35± 6.60 525.00± 24.10
Simsr 804.17± 13.77 - 771.89± 36.27 184.45± 7.23 640.09± 25.46
CMID 641.83± 27.15 - 173.44± 19.58 - 511.08± 20.77

SISApr 921.64± 12.43 209.55± 6.46 893.54± 4.74 839.19± 7.90 818.90± 9.21
SISA 919.78± 9.40 209.68± 6.23 900.45± 5.05 851.94± 3.60 822.72± 6.96

Abs.(%) Avg. ↑ 3.20(0.35) 25.02(13.55) 8.58(0.96) 8.1(0.96) 30.11(3.80)

standard deviation of episodic rewards, excluding results with final rewards below 100.00.
Our results show that SISA consistently outperforms the baselines across all DMControl
tasks, achieving up to a 25.02 increase in mean episodic reward. This corresponds to
a 13.55% improvement from 184.66 to 209.68 in the hopper-hop task. Moreover, SISA
exhibits greater stability than other methods, with reduced standard deviations in six tasks.
In the remaining tasks, SISA ranks among the lowest deviations, closely matching the top-
performing baselines. Compared to our previous version, SISApr (Zeng et al., 2023b), the
current method achieves higher average rewards in six tasks and lower standard deviations in
eight tasks. These results demonstrate that the undirected structural entropy optimization
algorithm (Subsection 4.1) enhances both the effectiveness and stability of state abstraction.

To further analyze sample efficiency in the DMControl experiments, we define the target
reward as 90% of SISA’s final average value and report the timesteps required for both
SISA and the best-performing baseline to reach this target. As shown in Figure 9, SISA
reaches the mean episodic reward target in fewer steps than the baseline, demonstrating
superior sample efficiency. Specifically, in the hopper-stand task, SISA improves sample
efficiency by 64.86%, reducing the required timesteps from 222k to 78k to reach an episodic
reward of 810.41. In summary, SISA have established a new state-of-the-art on DMControl,
excelling in policy quality, stability, and sample efficiency in online learning with reward-
based feedback. This success stems from our state abstraction mechanism, which optimally
balances the compression of irrelevant information with the retention of essential features,
enhancing both learning efficiency and policy performance.
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Figure 9: Sample-efficiency analysis of the SISA mechanism and baseline
method in the DMControl continuous control tasks.

For each DMControl task, Figure 10 presents detailed learning curves for SISA and three
leading baselines, showing the progression of mean episodic rewards and their convergence
points throughout training. For example, in the pendulum-swingup task, SISA converges
within 320, 000 timesteps and attains a mean reward of 851.94.

6.2 Skill-based Learning

In the bipedal robotic environment, we present the average rewards and standard deviations
of SISL and other baselines after one million steps in Table 2. Notably, SISL consistently
outperforms all baseline methods in each control task, achieving a maximum improvement
of 18.75% in average reward, increasing from 11.2 to 13.3 in the Hurdles task. To further
analyze training efficiency, we visualize the reward learning curves of SISL and the two
best-performing baselines in the Hurdles and Stairs tasks. As shown in Figure 11, SISL
consistently achieves a policy of comparable quality to all baselines while requiring fewer
environment steps during training on both tasks. For instance, in the Hurdles task, to
reach a reward of 12.96, the HSD-3 baseline requires 21.45 million environmental steps,
while SISL achieves the same reward with only 985, 000 steps, highlighting the efficiency
advantage of our approach.

Moreover, Figure 12 illustrates the skill selection process in SISL during a testing episode
of the Stairs task, highlighting skill discovery dynamics and selection over time. During
the episode, SISL discovers and selects skills with distinct temporal properties across dif-
ferent task phases. Specifically, walking upstairs requires regular control of the torso’s X
and Z positions, with occasional adjustments to the Y position and foot movements. Run-
ning forward follows a different pattern, primarily relying on the X position. To maintain
balance while descending, the right foot is explicitly adjusted more frequently. SISL dynam-
ically adapts skill discovery and selection to different environmental phases by minimizing
structural entropy in directed abstract transitions, successfully completing the primary
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Figure 10: Learning curves of SISA and three leading baselines in various DM-
Control tasks.

Table 2: Summary of the final performance across benchmark tasks using the
bipedal robot: “average value ± standard deviation” and “average improvement
(absolute value in percentage)”. The best performance in each category is
highlighted in bold, while the second-best performance is underlined.

Benchmark Task Hurdles Limbo HurdlesLimbo Stairs Gaps PoleBalance

SAC −0.1± 6.2 −0.1± 0.2 −0.1± 0.4 0.0± 4.8 −0.1± 0.5 231.5± 104.5
Switching Ensemble −0.2± 3.0 −0.2± 4.3 −0.2± 3.6 1.1± 3.8 −0.2± 0.3 132.8± 230.1

HIRO-SAC 3.9± 1.6 1.1± 2.2 3.5± 0.1 0.0± 0.0 0.0± 0.2 96.4± 12.4
HIDIO −0.1± 0.1 −0.1± 0.1 −0.2± 0.1 −0.2± 0.3 −0.2± 0.3 117.6± 33.8
HSD-3 11.2± 2.0 12.0± 0.9 11.2± 1.3 6.5± 0.7 −0.2± 8.9 246.0± 36.9

SISL 13.3± 0.9 12.6± 0.7 12.8± 0.1 7.0± 0.1 0.0± 0.0 252.6± 11.2

Abs.(%) Avg. ↑ 2.1(18.75) 0.6(5.0) 1.6(14.29) 0.5(7.69) 0.0(0.0) 6.6(2.68)

task without task-specific prior knowledge. A video demonstration of SISL across multiple
episodes and tasks is available on GitHub2.

For the 7-DoF fetching benchmark, we compare SISL with baselines operating in ei-
ther the original action space (PARROT and BC+FineTuning) or the skill space (SPiRL,
Reskill, DSAA, and Louvain). Table 3 summarizes the average rewards and standard de-
viations after convergence across four control tasks, excluding final rewards below 10.00.

2. https://selgroup.github.io/SIDM/
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Figure 11: Efficiency comparison of our SISL and baseline methods in the
bipedal robotic environment.
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Figure 12: The skill discovery and selection during a testing episode of the
Stairs task in our single-agent skill-based learning method.

SISL significantly outperforms all baselines in every benchmark task, achieving a maxi-
mum improvement of 32.70% from 42.42 to 56.29 in the Slippery Push task. In terms
of learning stability, SISL exhibits minimal deviations in the Pyramid Stack and Complex

Hook tasks and low deviations in Table Cleanup and Complex Hook, closely trailing the
top-performing baseline, Reskill. Compared with the baseline DSAA, which also leverages
abstract states for skill discovery, our SISL method demonstrates improved learning effec-
tiveness, achieving an average improvement of 22.72 in average reward. This is because the
skill hierarchy constructed by SISL captures more fine-grained temporal dynamics, lead-
ing to better agent exploration and policy optimization. Compared to Louvain, which
is based on multi-level skill hierarchies, SISL achieves greater learning stability, reducing
the standard deviation of final rewards by an average of 68.83%, from 3.16 to 0.99. This
improvement stems from SISL’s ability to adjust its skill hierarchy while mitigating obser-
vational noise through state abstraction, resulting in more stable learning trajectories and
reduced performance fluctuations. Thus, while existing research shares technical similarities
with this work in skill discovery via state abstraction or hierarchical skill construction, it
further supports the validity of our approach. Moreover, guided by the structural informa-
tion principle, we propose a unified hierarchical learning framework that spans from state
abstraction to adaptive skill hierarchy construction, while effectively mitigating reliance on
prior knowledge and reducing intrinsic observational noise in downstream tasks.
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Table 3: Summary of the final performances across benchmark tasks with the
7-DOF robotic arms: “average value ± standard deviation” and “average im-
provement (absolute value in percentage)”. The best performance in each cat-
egory is highlighted in bold, while the second-best performance is underlined.

Benchmark Task Fetch Table Cleanup Fetch Slippery Push Fetch Pyramid Stack Fetch Complex Hock

SPiRL 11.33± 1.74 - - 33.65± 3.34
BC + Fine-Tuning - 14.81± 2.91 15.43± 2.03 -

PARROT - 32.10± 3.58 - 13.07± 2.89
Reskill 35.48± 0.39 42.42± 1.32 16.91± 2.78 58.93± 0.34
DSAA 21.47± 0.38 33.64± 1.72 10.58± 1.97 28.79± 3.02

Louvain 29.09± 2.48 42.88± 2.62 13.28± 3.62 50.46± 3.92

SISL 39.80± 0.71 56.29± 1.43 22.20± 1.67 67.06± 0.13

Abs.(%) Avg. ↑ 4.32(12.18) 13.41(32.27) 5.29(31.28) 8.13(13.80)
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Figure 13: Learning curves of SISL and three leading baselines in various fetch-
ing tasks with the 7-DOF robotic arms.

Figure 13 presents detailed training learning curves for SISL and three leading baselines
across each control task, showing the progression of mean episodic rewards and their con-
vergence points. For example, in the Table Cleanup task, SISL converges within 485, 000
timesteps and attains a mean reward of 39.80.

6.3 Role-based Learning

In this subsection, we compare the SIRD method with state-of-the-art MARL algorithms
across SMAC maps in the easy, hard, and super-hard categories. Table 4 summarizes
the average win rates (above 10.00) and their standard deviations for each map category.
SIRD outperforms all baseline algorithms, achieving up to a 5.19% improvement in average
reward and a reduction of up to 88.26% in standard deviation, highlighting its performance
advantages in both learning effectiveness and stability. By leveraging structural information
principles, our action abstraction mechanism facilitates automatic role discovery, improving
agent cooperation and reducing reliance on sensitive hyperparameters. These improvements
are particularly evident in challenging exploration scenarios, such as the hard and super-
hard maps.

Furthermore, we compare the SIRD method with baseline algorithms across all 14 SMAC
maps to evaluate their overall performance. Figure 14 presents the average test win rate
and the number of maps where each MARL algorithm leads in performance at different
stages of policy learning. As shown in Figure 14 (left), SIRD surpasses all baselines and
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Table 4: Summary of the test win rates under different map categories: “average
value ± standard deviation” and “improvements/reductions (absolute value in
percentage)”. The best performance in each category is highlighted in bold,
while the second-best performance is underlined.

Categories Easy Hard Super Hard

COMA 16.67± 22.73 - -
IQL 52.50± 40.69 73.44± 24.85 10.55± 18.49
VDN 85.01± 17.22 71.49± 18.78 71.10± 27.23
QMIX 98.44 ± 2.10 87.11± 18.58 70.31± 38.65

QTRAN 64.69± 36.79 58.20± 45.37 16.80± 20.61
QPLEX 96.88± 5.04 89.85 ± 11.35 84.77± 10.76
MAPPO 66.67± 35.35 61.72 ± 23.60 73.98± 16.45
RODE 93.47± 10.19 88.44± 20.96 92.71 ± 9.20
ACE - 91.10± 11.66 88.15± 5.21

SIRDpr 98.61± 1.75 95.31± 6.63 95.71± 3.10
SIRD 98.83± 2.17 95.83± 4.99 97.50± 1.08

Abs.(%) Avg. ↑ 0.39(0.40) 4.73(5.19) 4.79(5.17)
Abs.(%) Dev. ↓ 0.35(16.67) 6.36(56.04) 8.12(88.26)

achieves faster convergence. Remarkably, SIRD maintains the highest average test win rate
throughout the last 60% of the learning process, achieving a final win rate of 96.7%, which
exceeds the second-best (ACE at 92.73%) and the third-best (QPLEX at 90.99%) by 3.97%
and 5.71%, respectively. This enhanced performance, particularly in policy quality and
learning efficiency, stems from SIRD’s effective exploration of action subsets identified via
its action abstraction mechanism. Figure 14 (right) shows that SIRD achieves the best final
policy in nearly half the maps (6 out of 14), significantly outperforming the baselines.

Figure 15 illustrates SIRD-driven multi-agent collaboration in the 1c3s5z task, high-
lighting role variation and agent distribution throughout a testing episode. Compared to
the role-based baseline RODE, SIRD dynamically adjusts its role set and action subspaces
via action abstraction, without manual intervention, leading to improved performance. In
summary, SIRD outperforms all MARL baselines in learning effectiveness and stability,
establishing a new state-of-the-art on SMAC.

Figure 16 presents the training curves for SIRD and three leading baselines on each
SMAC map, highlighting convergence points and showing standard deviations for each
task. In the MMM2 task, SIRD converges after 1, 604, 442 timesteps and achieves an average
win rate of 96.2%.

6.4 Generality Abilities

The proposed SIDM is a general framework and can be flexibly integrated with various
single-agent and multi-agent RL algorithms, serving as a high-level method for skill and
role discovery to enhance hierarchical learning performance.

For single-agent decision-making, we employ SAC (Haarnoja et al., 2018) and PPO
(Schulman et al., 2017) as low-level RL algorithms in skill-based learning, forming the SL-
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Figure 14: (left) The average test win rates across all 14 maps; (right) The
number of maps (out of 14) where the algorithm achieves the highest average
test win rate.
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Figure 15: The role discovery and selection during a testing episode of the
1c3s5z map in our multi-agent role-based learning method.

SAC and SL-PPO variants. As shown in Figure 17, the SL-SAC and SL-PPO variants
significantly outperform their original counterparts in terms of learning performance, par-
ticularly during training on the Slippery Push and Pyramid Stack tasks in the 7-DoF
Fetching benchmark. For multi-agent coordination, we integrate the SIRD method with
QMIX (Rashid et al., 2018) and QPLEX (Wang et al., 2021a) algorithms, resulting in
the SI-QMIX and SI-QPLEX variants. As shown in Figure 18, SI-QMIX and SI-QPLEX
outperform their original counterparts in terms of policy quality and sample efficiency, par-
ticularly on the 2c vs 64zg and MMM2 maps in the SMAC benchmark. This leads to faster
convergence and more effective multi-agent coordination during training.

These experimental results highlight the effectiveness of applying structural information
principles to adaptively identify inherent hierarchical decision-making structures, forming
the foundation for general skill-based and role-based learning methods.
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Figure 16: Learning curves of SIRD and three leading baselines in various
SMAC maps.

6.5 Ablation Studies

We evaluate the contribution of state abstraction (Subsection 4.1) and directed entropy
optimization (Subsection 4.2) to the performance advantages of SIDM in single-agent skill-
based learning. Specifically, we introduce two SISL variants—SISL-AS and SISL-DS—by
disabling these components, respectively. In SISL-AS, the skill set is directly extracted
from demonstration data and remains fixed throughout the learning process. In SISL-
DS, the parameter h is set to K, and the set Kh is restricted to a single skill defined at
the largest time scale. This configuration restricts the skill set to a single skill, which
is insufficient for learning complex decision-making tasks. As shown in Figure 19, the
significantly lower training performance of SISL-DS underscores the importance of directed
structural entropy in capturing key transition patterns and constructing a skill hierarchy.
The performance gap between SISL and SISL-AS highlights the benefits of adaptive skill
discovery and observational noise mitigation through the state abstraction mechanism, as
discussed in Subsection 6.2.

In multi-agent scenarios, we conduct ablation studies to validate the impact of the
graph construction and edge filtration modules in role-based learning (Subsection 4.5) on
the 2c vs 64zg and 1c3s5z SMAC maps. We develop two simplified SIRD variants, SIRD-
ST and SIRD-SP, by removing either the graph construction or edge filtration module to
isolate their individual contributions. Specifically, SIRD-ST identifies roles by applying
K-means clustering to the joint action space. In contrast, SIRD-SP directly optimizes the
encoding tree of the complete action graph for role discovery. As shown in Figure 20,
SIRD significantly outperforms SIRD-ST in both mean test win rate and policy stability,
emphasizing the crucial role of graph construction in hierarchical learning. The comparison
between SIRD and SIRD-SP suggests that edge filtration accelerates learning by reducing
convergence timesteps without compromising performance.
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Figure 17: Training curves of SISL integrated with single-agent RL methods,
specifically SAC and PPO, in fetching tasks with the 7-DOF robotic arms.

Table 5: Sensitivity analysis on alternative similarity metrics in the SISA
method using the DMControl suite.

Task cheetah-run finger-spin reacher-easy walker-walk

SISAbm 802.94± 7.28 968.96± 8.03 943.06± 15.82 921.61± 11.66
SISAsfs 802.77± 8.04 968.14± 8.19 938.29± 13.80 920.71± 10.53
SISAhrd 803.19± 6.91 970.03± 10.58 939.52± 18.29 923.08± 14.47
SISAcrs 802.59± 7.40 970.49± 8.95 941.33± 14.09 923.55± 13.70

SISA 803.32± 5.51 968.59± 6.54 941.71± 16.04 919.78± 9.40

6.6 Sensitivity Analysis

In this subsection, we perform a sensitivity analysis on two essential parameters in the
SIDM framework: the similarity metric in state abstraction and the encoding tree height
in action abstraction.

In the single-agent scenario, we investigate the bisimulation metric (Castro, 2020), suc-
cessor feature similarity (Hoang et al., 2021), Hilbert representation difference (Park et al.,
2024), and contrastive representation similarity (Eysenbach et al., 2022) as alternative ap-
proaches for quantifying state similarity in state abstraction, resulting in the SISA variants
SISAbm, SISAsfs, SISAhrd, and SISAcrs, respectively. For the SISAsfs variant, we extract
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Figure 18: Training curves of SIRD integrated with multi-agent algorithms,
specifically QMIX and QPLEX, in SMAC maps.
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Figure 19: Ablation studies on state abstraction and directed optimization in
single-agent, skill-based learning.

temporally aligned state-action pairs to learn their successor features, using the inner prod-
uct of the resulting feature representations to quantify similarity. For the SISAhrd variant,
we calculate the ratio between the Hilbert representation difference and the maximum ob-
served difference across the dataset as the state similarity. For the SISAcrs variant, we define
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Figure 20: Ablation studies on graph construction and edge filtration in multi-
agent, role-based learning.

Table 6: Sensitivity analysis on encoding tree height in SIRD method using the
SMAC benchmark.

Category, Map
Easy Maps Hard Maps Super Hard Maps

1c3s5z 2s3z 2c vs 64zg 3s vs 5z MMM2 27m vs 30m

SIRD-2 95.72± 0.59 98.24± 0.71 99.04± 0.07 86.18± 0.15 96.20± 0.36 94.61± 0.06

SIRD-3 95.07± 0.76 97.60± 0.77 96.78± 0.25 84.53± 0.41 96.83± 0.19 95.47± 0.13

SIRD-4 94.83± 0.64 97.49± 0.80 95.26± 0.29 84.70± 0.44 96.69± 0.18 95.84± 0.18

positive and negative pairs for contrastive learning based on state community partitions to
obtain state representations, and again use the inner product of these representations as
the similarity measure. We evaluate the SISA mechanism and its variants on four DMCon-
trol tasks and summarize their average task rewards after convergence in Table 5. Across
different similarity metrics, our state abstraction mechanism consistently achieves stable
decision-making performance, demonstrating the generalization ability of our method and
justifying the use of a simple similarity measure based on the Pearson correlation coefficient.

In the multi-agent collaboration setting, we adjust the encoding tree height parameter K
in the action abstraction to 3 and 4. For each encoding tree, abstract actions are represented
as the parent nodes of leaf nodes. We summarize SIRD’s performance at different tree
heights across four SMAC benchmark maps of varying difficulty in Table 6. The SIRD
achieves the best performance at K = 2 in both relatively easy and hard tasks. This
is because, in these scenarios, an overly complex role division is unnecessary, and a two-
layer action abstraction is sufficient to fulfill task requirements. Increasing the tree height
expands the candidate role set, making role-based learning more challenging. For super-
hard tasks, deeper encoding tree structures better facilitate complex agent collaboration in
these extremely difficult scenarios.

7 Conclusion

This paper proposes SIDM, a novel hierarchical learning framework designed to reduce re-
liance on prior knowledge and manual definitions in both skill-based and role-based learning.
It also addresses undirected limitations of current structural information principles.
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Specifically, SIDM introduces an adaptive abstraction mechanism that extracts abstract
state and action representations from historical interaction trajectories. Directed structural
entropy is formally defined and optimized to capture transition dynamics between abstract
states, enabling the discovery of hierarchical skills. Building on these foundations, we de-
velop skill-based learning methods for single-agent decision-making and role-based strategies
for multi-agent collaboration, resulting in substantial performance improvements.

Comprehensive evaluations on challenging benchmarks demonstrate that SIDM signif-
icantly and consistently outperforms state-of-the-art baselines in terms of learning effec-
tiveness, stability, and efficiency. These comparative results highlight the importance of
adaptively balancing the compression of irrelevant information with the retention of essen-
tial features, as well as dynamically capturing the temporal hierarchy of skills and roles to
enhance hierarchical decision-making. Furthermore, sensitivity analysis and ablation stud-
ies emphasize the generalizability of the SIDM framework and the individual contributions
of the abstraction mechanism and direct entropy optimization.

Our objective is to provide an innovative and unified perspective on leveraging struc-
tural information in state-action trajectories to uncover hierarchical learning structures,
ultimately improving decision-making performance. In future work, we plan to explore
deeper encoding trees for hierarchical state-action abstraction and evaluate SIDM in more
complex environments.
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Appendix A. Framework Details

A.1 Notations

Table 7: Glossary of Notations.

Notation Description

Ms;Mm;Mϕ Single-agent, Multi-agent, and Abstract Markov decision processes
n;ni;N Batch Size; Single agent; Agent set
S;A;Z State space; Action space; Abstract space
S;A;Z State variable; Action variable; Abstract Variable
s; a; z Single state; Single action; Single abstract element
r;R;Rϕ;Rin Reward; Reward function; Abstract reward function; Intrinsic reward function
P;Pϕ Transition function; Abstract transition function
γ Discount factor
π;πρ;πκ;πh Agent policy; Role policy; Skill policy; High-level policy
ρ; Ψ; ti Single role; Role space; Subtask
κ;K Single skill/option; Skill space
τ Individual action-observation history
I; T Initiation set; Termination condition

G;Gdir Homogeneous weighted undirected and directed graphs
Gs;Ga;G∗ State graph; Action graph; Sparse graph
v; dv;V Single vertex; Vertex degree; Vertex set
e;E;Edir Single edge; Set of undirected edges; Set of directed edges
w;W ;Wdir Edge weight; Weight functions for undirected and directed edges

λ;α; ν;T Root node; Tree node; Leaf node; Encoding tree
Vα;V Vertex subset; Volume term
H Structural entropy
L;K Number of children node; Maximal height of encoding tree
η;Ui Optimization operator; Node set locating specific layer

f ; C Embedding function; State or action correlation
hs;hα;hT ;h State representation; Node representation; Tree height; Skill parameter
πs;πe Stationary distribution; Eigenvector
µmg;µcb;µ Added nodes by merge and combine operations; Average value
k; k Filtration parameter; Index variable
B;L Replay buffer; Training loss
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Appendix B. Detailed Derivations

B.1 Derivations of Directed Structural Entropy Variations

Because of the properties of the encoding tree Tdir, for each non-leaf node α, it holds for
its child nodes’ corresponding vertex sets that:

Lα⋂
i=1

Vαi = ∅,
Lα⋃
i=1

Vαi = Vα. (31)

Equations 18 and 19 can be rewritten as follows:

Vα =
∑
vi∈V

∑
vj∈Vα

[
πs(vi) ·W ′

dir(vi, vj)
]

=

Lα∑
k=1

∑
vi∈V

∑
vj∈Vαk

[
πs(vi) ·W ′

dir(vi, vj)
]

=

Lα∑
k=1

Vαk
,

(32)

gα =
∑
vi /∈Vα

∑
vj∈Vα

[
πs(vi) ·W ′

dir(vi, vj)
]

=

Lα∑
k=1

 ∑
vi /∈Vα

∑
vj∈Vαk

[
πs(vi) ·W ′

dir(vi, vj)
]

=

Lα∑
k=1

 ∑
vi /∈Vαk

∑
vj∈Vαk

[
πs(vi) ·W ′

dir(vi, vj)
]
−

Lα∑
l=1,l ̸=k

 ∑
vi∈Vαl

∑
vj∈Vαk

[
πs(vi) ·W ′

dir(vi, vj)
]

=

Lα∑
k=1

gαk
−

Lα∑
l=1,l ̸=k

gαl,αk


=

Lα∑
i=1

gαi −
Lα∑
i ̸=j

gαi,αj .

(33)
As shown in Figure 21, one merge (ηmg) operation on non-leaf sibling nodes α and β is

executed as follows: 
µ−
mg = α− = β−,

αi
− = µmg 1 ≤ i ≤ Lα,

βi
− = µmg 1 ≤ i ≤ Lβ,

(34)

where µmg is the added tree node via the merge operation. Before the merge operation, the
entropy sum of nodes α, β, and their child nodes is:

HTdir(G′
dir;α) + HTdir(G′

dir;β) = − gα
vol(G′

dir)
· log2

Vα
Vα−

−
gβ

vol(G′
dir)
· log2

Vβ
Vβ−

, (35)
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𝛼𝛼 𝛽𝛽
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Figure 21: The merge and combine operations on sliding tree nodes.

Lα∑
i

HTdir(G′
dir;αi)+

Lβ∑
i

HTdir(G′
dir;βi) =

Lα∑
i

[
− gαi

vol(G′
dir)
· log2

Vαi

Vα

]
+

Lβ∑
i

[
−

gβi

vol(G′
dir)
· log2

Vβi

Vβ

]
.

(36)
After the merge operation, their entropy sum is given by:

HT ′
dir(G′

dir;µmg) = −
gµmg

vol(G′
dir)
· log2

Vµmg

Vα−
, (37)

Lα∑
i

HT ′
dir(G′

dir;αi)+

Lβ∑
i

HT ′
dir(G′

dir;βi) =

Lα∑
i

[
− gαi

vol(G′
dir)
· log2

Vαi

Vµmg

]
+

Lβ∑
i

[
−

gβi

vol(G′
dir)
· log2

Vβi

Vµmg

]
.

(38)
Therefore, the entropy variation ∆mg(Tdir, α, β) is calculated as follows:

Lα∑
i

HTdir(G′
dir;αi)−

Lα∑
i

HT ′
dir(G′

dir;αi) =

Lα∑
i

[
− gαi

vol(G′
dir)
· log2

Vµmg

Vα

]
= −

∑Lα
i gαi

vol(G′
dir)
·log2

Vµmg

Vα
,

(39)
Lβ∑
i

HTdir(G′
dir;βi)−

Lβ∑
i

HT ′
dir(G′

dir;βi) =

Lβ∑
i

[
−

gβi

vol(G′
dir)
· log2

Vµmg

Vβ

]
= −

∑Lβ

i gβi

vol(G′
dir)
·log2

Vµmg

Vβ
,

(40)

HT ′
dir(G′

dir;µmg) = −
gµmg

vol(G′
dir)
· log2

Vµmg

Vα−

=
gα,β + gβ,α − gα − gβ

vol(G′
dir)

· log2
Vµmg

Vα−
,

(41)

HTdir(G′
dir;α) + HTdir(G′

dir;β)−HT ′
dir(G′

dir;µmg) =

gα
vol(G′

dir)
· log2

Vµmg

Vα
+

gβ
vol(G′

dir)
· log2

Vµmg

Vβ
+

gα,β + gβ,α
vol(G′

dir)
· log2

Vα−

Vµmg

,
(42)

∆mg(Tdir, α, β) =
gα −

∑Lα
i gαi

vol(G′
dir)

· log2
Vµmg

Vα
+

gβ −
∑Lβ

i gβi

vol(G′
dir)

· log2
Vµmg

Vβ
+

gα,β + gβ,α
vol(G′

dir)
· log2

Vα−

Vµmg

=
gα,β + gβ,α
vol(G′

dir)
· log2

Vα−

Vµmg

−
∑Lα

i ̸=j gαi,αj

vol(G′
dir)

· log2
Vµmg

Vα
−

∑Lβ

i ̸=j gβi,βj

vol(G′
dir)

· log2
Vµmg

Vβ
.

(43)
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On the other hand, as shown in Figure 21, one combine (ηcb) operation on sibling nodes
α and β is executed as follows:

µcb
− = α−, α− = µcb, β− = µcb, (44)

where µcb is the added tree node via the combine operation. After the combine operation,
the entropy sum of these nodes is given by:

HT ′
dir(G′

dir;µcb) = − gµcb

vol(G′
dir)
· log2

Vµcb

Vα−
, (45)

HT ′
dir(G′

dir;α) + HT ′
dir(G′

dir;β) = − gα
vol(G′

dir)
· log2

Vα
Vµcb

−
gβ

vol(G′
dir)
· log2

Vβ
Vµcb

, (46)

Lα∑
i

HT ′
dir(G′

dir;αi) +

Lβ∑
i

HT ′
dir(G′

dir;βi) =

Lα∑
i

HTdir(G′
dir;αi) +

Lβ∑
i

HTdir(G′
dir;βi). (47)

Therefore, the entropy variation ∆cb(Tdir, α, β) is calculated as follows:

∆cb(Tdir, α, β) =
[
HTdir(G′

dir;α) + HTdir(G′
dir;β)

]
−
[
HT ′

dir(G′
dir;µcb) + HT ′

dir(G′
dir;α) + HT ′

dir(G′
dir;β)

]
=

gα
vol(G′

dir)
· log2

Vα−

Vµcb

+
gβ

vol(G′
dir)
· log2

Vα−

Vµcb

− gµcb

vol(G′
dir)
· log2

Vα−

Vµcb

=
gα + gβ − gµcb

vol(G′
dir)

· log2
Vα−

Vµcb

=
gα,β + gβ,α
vol(G′

dir)
· log2

Vα−

Vµcb

.

(48)
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Appendix C. Theoretical Proofs

C.1 Proof of Proposition 1

Proof We provide two distinct proofs for this theorem, one using the Perron-Frobenius
theorem and another using the Markov Chain fundamental theorem.

C.1.1 Proof Based on Perron-Frobenius Theorem

For this non-negative and irreducible matrix A′
dir where each row sums to 1, the Perron-

Fronbenius theorem ensures:

• There exists an eigenvalue 1 and a corresponding eigenvector πe such that:

A′
dirπe = πe. (49)

• The eigenvalue 1 is simple (i.e., it has algebraic multiplicity 1).

• The corresponding eigenvector πe can be chosen to have strictly positive components.

• The absolute value of any other eigenvalue is less than 1.

Since the eigenvalue 1 is simple and the corresponding eigenvector πe has strictly positive
components, we can derive the unique stationary distribution πs by:

πs =
πe∑

v∈V πe(v)
. (50)

To verify that πs is indeed a stationary distribution, we need to show that it remains
unchanged by the application of A′

dir:

A′
dirπs = A′

dir

πe∑
v∈V πe(v)

=
A′

dirπe∑
v∈V πe(v)

=
πe∑

v∈V πe(v)
= πs. (51)

Because G′
dir is strongly connected and A′

dir is a stochastic matrix, any initial distribution
π(0) will converge to the stationary distribution πs under repeated application of A′

dir:

lim
k→∞

(π(0)(A′
dir)

k
) = πs. (52)

This convergence is guaranteed by the fact that all other eigenvalues of A′
dir have magnitudes

less than 1, leading to their contributions diminishing to zero as k increases.
Therefore, the stationary distribution πs exists and is unique, and it corresponds to the

eigenvector associated with the eigenvalue 1 of the adjacency matrix A′
dir.

C.1.2 Proof Based on Markov Chain Theorem

We interpret the weighted adjacency matrix A′
dir as the transition probability matrix P

of a Markov chain. Since each row of A′
dir sums to 1, it satisfies the conditions of a right

stochastic matrix.
Because the graph G′

dir is strongly connected, the Markov chain is irreducible, meaning
that there exists a path between any two states in the chain. Additionally, since all transition
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probabilities are positive, the chain is aperiodic, ensuring that no strict cycle behavior
prevents convergence to a unique stationary distribution.

By the fundamental theorem of Markov chains, an irreducible and aperiodic Markov
chain with a finite state space has a unique stationary distribution πs, which satisfies:

πsP = πs. (53)

Expanding this equation using the transition matrix P = A′
dir, we get:

πsA
′
dir = πs. (54)

Thus, πs is a left eigenvector of A′
dir associated with the eigenvalue 1.

To ensure that πs represents a valid probability distribution, we normalize it so that:∑
v∈V

πs(v) = 1. (55)

Moreover, the Perron-Frobenius theorem guarantees that for an irreducible, non-negative
stochastic matrix A′

dir, the eigenvalue 1 is simple (having algebraic multiplicity 1), and its
corresponding eigenvector πs has strictly positive components.

Since the Markov chain is irreducible and aperiodic, it converges to the stationary dis-
tribution πs regardless of the initial distribution π(0):

lim
k→∞

π(0)(A′
dir)

k = πs. (56)

This confirms that πs is the unique stationary distribution and corresponds to the unique
eigenvector of A′

dir associated with eigenvalue 1.

C.2 Proof of Theorem 2

Proof We analyze the structure of the discovered skill set Kh when h = K. In this case,
the skill set is defined as:

Kh = {⟨Iκi , πκi , Tκi⟩ | αi ∈ U z
h} = {⟨Iκ1 , πκ1 , Tκ1⟩ | α1 = λ}, (57)

where λ is the root node in the optimal encoding tree T ∗
dir, corresponding to the entire set

Zs of abstract states.
For the discovered skill κ1, we explicitly define:

• The initiation set Iκ1 consists of all abstract states except the one with the highest
stationary probability:

Iκ1 = {zsi | zsi ̸= arg max
zsj∈Zs

πs(z
s
j )}. (58)

• The skill policy maximizes an intrinsic reward Rin defined over state transitions:

π∗
κ1

= arg max
πκ1

EP

[∑
γtRin(zsi , z

s
j )
]

. (59)
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• The termination condition is satisfied when the state with the highest probability is
reached:

Tκ1(zsi ) =

{
1 if arg maxzsj∈Zs πs(z

s
j ) = zsi ,

0 otherwise.
(60)

We now define the eigenoption κe associated with the largest eigenvalue of the adjacency
matrix A′

dir. Eigenoptions are derived from the principal eigenvector πe of A′
dir, which

satisfies:
A′

dirπe = πe. (61)

To learn the eigenoption’s option policy, we define the intrinsic reward function Rin based
on the eigenvector:

Rin
e (zsi , z

s
j ) = πe(z

s
i )− πe(z

s
j ). (62)

This ensures that the option policy moves toward the most “important” state in the eigen-
vector ranking. The eigenoption is entirely defined by:

• Initiation set:
Iκe = {zsi | zsi ̸= arg max

zsj∈Zs

πe(z
s
j )}. (63)

• Option policy:

π∗
κe

= arg max
πκe

EP

[∑
γtRin

e (zsi , z
s
j )
]

. (64)

• Termination condition:

Tκe(z
s
i ) =

{
1 if arg maxzsj∈Zs πe(z

s
j ) = zsi ,

0 otherwise.
(65)

According to Appendix C.1, for the irreducible and stochastic matrix A′
dir, we know:

πs(z
s
i ) = πe(z

s
i ), (66)

Rin(zsi , z
s
j ) = Rin

e (zsi , z
s
j ). (67)

Thus, since both κ1 and κe share the same initiation set, option policy, and termination
condition, we conclude:

κ1 = κe. (68)

This proves that the only skill discovered at h = K is the eigenoption associated with the
largest eigenvalue.
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Appendix D. Environment Details

D.1 Visual Gridworld

The visual gridworld environment consists of a 6×6 grid, where an agent can navigate using
four discrete actions: up, down, left, and right. Each position on the grid corresponds to a
unique state, which is represented to the agent in visual form. Specifically, the agent’s (x, y)
position is encoded into a one-hot image representation, where each grid cell is depicted as
a 3 × 3 pixel patch within an 18 × 18 image. The center pixel of the corresponding patch
is activated, and the image is subsequently smoothed using a truncated Gaussian kernel to
produce a more realistic visual input. To introduce variability and challenge the agent’s
perception, per-pixel noise sampled from another truncated Gaussian distribution is added
to the image.

During training, a single grid position is randomly designated as the goal state for each
random seed. The agent receives a reward of −1 at every timestep until it reaches the
goal state, after which a new episode begins with the agent placed in a randomly selected
location that is not the goal. This setup encourages the agent to learn efficient navigation
strategies that minimize cumulative negative reward.

D.2 DMControl Suite

The DeepMind Control Suite (Tunyasuvunakool et al., 2020) is a comprehensive benchmark-
ing platform for reinforcement learning algorithms, featuring a diverse array of continuous
control tasks that simulate various physical systems. Each task is designed with distinct
state and action spaces, as well as task-specific reward functions. Together, these com-
ponents define the environment’s dynamics and the agent’s learning objectives, enabling
rigorous evaluation and comparison of reinforcement learning algorithms on complex con-
trol problems.

The state spaces include critical physical parameters such as positions, velocities, and
angular velocities, providing agents with essential information for decision-making. The
action spaces define how agents can influence the environment, typically through torques
applied to joints or forces exerted on bodies. Reward functions are tailored to incentivize
specific behaviors, such as balancing a pole, reaching a target, walking stably, hopping
forward, catching a ball, or swinging up and stabilizing a pendulum.

D.3 Robotic Control Environment

This benchmark includes a suite of bipedal locomotion (Gehring et al., 2021) and 7-degree-
of-freedom (7-DoF) robotic manipulation (Silver et al., 2018) tasks, designed to evaluate
the adaptability and robustness of reinforcement learning algorithms under dynamic and
variable conditions.

In the bipedal locomotion scenarios, robots are initialized at predefined positions and
configurations. To simulate real-world uncertainties, joint positions are perturbed with
noise sampled uniformly from the interval [−0.1, 0.1], while joint velocities are perturbed
with Gaussian noise scaled by 0.1. These perturbations are consistent with those used in
standard MuJoCo benchmark tasks. Each environment provides three distinct observation
modalities: (1) proprioceptive states, which include internal robot states such as joint angles
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and velocities; (2) task-specific observations, representing additional sensory inputs relevant
to the task; and (3) goal state measurements, which indicate the desired outcome and are
primarily used to compute relative goals in low-level policy inputs. Episodes typically last
for 1000 interaction steps, unless terminated earlier due to entry into invalid states, as
defined by the specific robot’s configuration.

The manipulation tasks, based on a 7-DoF robotic arm, involve diverse object interaction
challenges. Each task introduces unique physical or dynamical variations to evaluate the
generalization capabilities of learned policies:
• Slippery Push: The robot must push a block to a target location on a low-friction

surface, increasing the difficulty of precise control.
• Table Cleanup: A rigid tray is introduced into the environment, requiring the robot

to place a block into it while navigating around new obstacles.
• Pyramid Stack: The robot must stack a small red block onto a larger blue block,

demanding accurate positioning and stability.
• Complex Hook: The robot uses a hook to manipulate objects that are otherwise

unreachable, with added difficulty from random object shapes and irregularities on the
table surface.

Each task is episodic, with predefined step limits (e.g., 50 or 100 steps), and sparse
rewards provided only upon successful task completion.

D.4 SMAC Benchmark

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a benchmark suite
designed to evaluate cooperative multi-agent reinforcement learning (MARL) algorithms.
Built upon the StarCraft II game engine, SMAC presents a series of micromanagement sce-
narios where each agent controls an individual unit and operates under partial observability
and decentralized execution constraints.

In SMAC, agents receive local observations that include information about nearby allies
and enemies, such as relative positions, health status, and available actions. The discrete
action space includes movement in cardinal directions, attacking specific targets, and halt-
ing. The environment’s dynamics are governed by the underlying StarCraft II physics and
game rules, introducing complexities such as terrain advantages, unit types, and attack
ranges. Each scenario is designed to assess various aspects of cooperative behavior, such as
focus fire, unit positioning, and retreat strategies. The reward structure typically assigns
positive rewards for eliminating enemy units and negative rewards for allied losses, thereby
encouraging agents to develop effective combat tactics.
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